年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    福建省莆田市仙游县第三片区重点达标名校2021-2022学年中考数学押题卷含解析

    福建省莆田市仙游县第三片区重点达标名校2021-2022学年中考数学押题卷含解析第1页
    福建省莆田市仙游县第三片区重点达标名校2021-2022学年中考数学押题卷含解析第2页
    福建省莆田市仙游县第三片区重点达标名校2021-2022学年中考数学押题卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省莆田市仙游县第三片区重点达标名校2021-2022学年中考数学押题卷含解析

    展开

    这是一份福建省莆田市仙游县第三片区重点达标名校2021-2022学年中考数学押题卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,如图,在平面直角坐标系中,A,计算4×的结果等于等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.(  )
    A.3,2 B.3,4 C.5,2 D.5,4
    2.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为( ).

    A. B. C. D.
    3.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是(  )

    A.0 B.1 C. D.
    4.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是(  )

    A. 或 
    B. 或 
    C. 或
    D.
    5.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是(  )

    A.①的收入去年和前年相同
    B.③的收入所占比例前年的比去年的大
    C.去年②的收入为2.8万
    D.前年年收入不止①②③三种农作物的收入
    6.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是(  )
    A.r<5 B.r>5 C.r<10 D.5<r<10
    7.计算4×(–9)的结果等于
    A.32 B.–32 C.36 D.–36
    8.对于代数式ax2+bx+c(a≠0),下列说法正确的是( )
    ①如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则a+bx+c=a(x-p)(x-q)
    ②存在三个实数m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c
    ③如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
    ④如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
    A.③ B.①③ C.②④ D.①③④
    9.下列图形中,是中心对称图形,但不是轴对称图形的是( )
    A. B.
    C. D.
    10.如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙 车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y (m),y与x的函数关系如图2所示.有以下结论:
    ①图1中a的值为500;
    ②乙车的速度为35 m/s;
    ③图1中线段EF应表示为;
    ④图2中函数图象与x轴交点的横坐标为1.
    其中所有的正确结论是( )

    A.①④ B.②③
    C.①②④ D.①③④
    11.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于(  )

    A.42° B.28° C.21° D.20°
    12.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是(  )
    A.﹣2 B.2 C.3 D.﹣3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如果抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),那么m的值为_____.
    14.函数y=中自变量x的取值范围是___________.
    15.若a是方程的根,则=_____.
    16.一个圆锥的三视图如图,则此圆锥的表面积为______.

    17.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为  ▲  .
    18.某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_____人.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,网格的每个小正方形边长均为1,每个小正方形的顶点称为格点.已知和的顶点都在格点上,线段的中点为.
    (1)以点为旋转中心,分别画出把顺时针旋转,后的,;
    (2)利用(1)变换后所形成的图案,解答下列问题:
    ①直接写出四边形,四边形的形状;
    ②直接写出的值;
    ③设的三边,,,请证明勾股定理.

    20.(6分)(1)解方程:x2﹣5x﹣6=0;
    (2)解不等式组:.
    21.(6分)如图,矩形ABCD绕点C顺时针旋转90°后得到矩形CEFG,连接DG交EF于H,连接AF交DG于M;
    (1)求证:AM=FM;
    (2)若∠AMD=a.求证:=cosα.

    22.(8分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.

    23.(8分)先化简,再求值:( +)÷,其中x=
    24.(10分)先化简,后求值:,其中.
    25.(10分)关于x的一元二次方程ax2+bx+1=1.
    (1)当b=a+2时,利用根的判别式判断方程根的情况;
    (2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.
    26.(12分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:
    20
    21
    19
    16
    27
    18
    31
    29
    21
    22
    25
    20
    19
    22
    35
    33
    19
    17
    18
    29
    18
    35
    22
    15
    18
    18
    31
    31
    19
    22
    整理上面数据,得到条形统计图:

    样本数据的平均数、众数、中位数如下表所示:
    统计量
    平均数
    众数
    中位数
    数值
    23
    m
    21
    根据以上信息,解答下列问题:上表中众数m的值为   ;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据   来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.
    27.(12分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元.
    (1)求购进甲、乙两种纪念品每件各需多少元?
    (2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件.考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7
    (3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元.在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.
    考点: 平均数;方差.
    2、C
    【解析】
    设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.
    【详解】
    如图,设B′C′与CD的交点为E,连接AE,

    在Rt△AB′E和Rt△ADE中,

    ∴Rt△AB′E≌Rt△ADE(HL),
    ∴∠DAE=∠B′AE,
    ∵旋转角为30°,
    ∴∠DAB′=60°,
    ∴∠DAE=×60°=30°,
    ∴DE=1×=,
    ∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.
    故选C.
    【点睛】
    本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.
    3、C
    【解析】
    试题分析: 本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.
    解:连接AB,如图所示:
    根据题意得:∠ACB=90°,
    由勾股定理得:AB==;
    故选C.

    考点:1.勾股定理;2.展开图折叠成几何体.
    4、B
    【解析】
    试题解析:如图所示:

    分两种情况进行讨论:
    当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过△ABC区域(包括边界),的取值范围是:
    当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过△ABC区域(包括边界),的取值范围是:
    故选B.
    点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,
    开口向上,开口向下.
    的绝对值越大,开口越小.
    5、C
    【解析】
    A、前年①的收入为60000×=19500,去年①的收入为80000×=26000,此选项错误;
    B、前年③的收入所占比例为×100%=30%,去年③的收入所占比例为×100%=32.5%,此选项错误;
    C、去年②的收入为80000×=28000=2.8(万元),此选项正确;
    D、前年年收入即为①②③三种农作物的收入,此选项错误,
    故选C.
    【点睛】
    本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
    6、D
    【解析】
    延长CD交⊙D于点E,
    ∵∠ACB=90°,AC=12,BC=9,∴AB==15,
    ∵D是AB中点,∴CD=,
    ∵G是△ABC的重心,∴CG==5,DG=2.5,
    ∴CE=CD+DE=CD+DF=10,
    ∵⊙C与⊙D相交,⊙C的半径为r,
    ∴ ,
    故选D.

    【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.
    7、D
    【解析】
    根据有理数的乘法法则进行计算即可.
    【详解】

    故选:D.
    【点睛】
    考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.
    8、A
    【解析】

    (1)如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则说明在中,当x=p和x=q时的y值相等,但并不能说明此时p、q是与x轴交点的横坐标,故①中结论不一定成立;
    (2)若am2+bm+c=an2+bn+c=as2+bs+c,则说明在中当x=m、n、s时,对应的y值相等,因此m、n、s中至少有两个数是相等的,故②错误;
    (3)如果ac<0,则b2-4ac>0,则的图象和x轴必有两个不同的交点,所以此时一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c,故③在结论正确;
    (4)如果ac>0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以④中结论不一定成立.
    综上所述,四种说法中正确的是③.
    故选A.
    9、A
    【解析】
    分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.
    详解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;
    B、此图形不是中心对称图形,是轴对称图形,故此选项错误;
    C、此图形是中心对称图形,也是轴对称图形,故此选项错误;
    D、此图形不是中心对称图形,是轴对称图形,故此选项错误.
    故选A.
    点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.
    10、A
    【解析】
    分析:①根据图象2得出结论; ②根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论; ③根据图1,线段的和与差可表示EF的长;④利用待定系数法求直线的解析式,令y=0可得结论.
    详解:①y是两车的距离,所以根据图2可知:图1中a的值为500,此选项正确;②由题意得:75×20+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;③图1中:EF=a+20x-vx=500+20x-25x=500-5x.故此选项不正确;④设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得: ,解得 ,∴y=-5x+500,
    当y=0时,-5x+500=0,x=1,即图2中函数图象与x轴交点的横坐标为1,此选项正确;其中所有的正确结论是①④;故选A.
    点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解题的关键.
    11、B
    【解析】
    利用OB=DE,OB=OD得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.
    【详解】
    解:连结OD,如图,

    ∵OB=DE,OB=OD,
    ∴DO=DE,
    ∴∠E=∠DOE,
    ∵∠1=∠DOE+∠E,
    ∴∠1=2∠E,
    而OC=OD,
    ∴∠C=∠1,
    ∴∠C=2∠E,
    ∴∠AOC=∠C+∠E=3∠E,
    ∴∠E=∠AOC=×84°=28°.
    故选:B.
    【点睛】
    本题考查了圆的认识:掌握与圆有关的概念( 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.
    12、B
    【解析】
    把代入方程组得:,
    解得:,
    所以a−2b=−2×()=2.
    故选B.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2
    【解析】
    把点(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.
    【详解】
    ∵抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),
    ∴1= -4+2(m-1)+3,解得m=2,故答案为2.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.
    14、x≥﹣且x≠1
    【解析】
    试题解析:根据题意得:
    解得:x≥﹣且x≠1.
    故答案为:x≥﹣且x≠1.
    15、1
    【解析】
    利用一元二次方程解的定义得到3a2-a=2,再把变形为,然后利用整体代入的方法计算.
    【详解】
    ∵a是方程的根,
    ∴3a2-a-2=0,
    ∴3a2-a=2,
    ∴==5-2×2=1.
    故答案为:1.
    【点睛】
    此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    16、55cm2
    【解析】
    由正视图和左视图判断出圆锥的半径和母线长,然后根据圆锥的表面积公式求解即可.
    【详解】
    由三视图可知,半径为5cm,圆锥母线长为6cm,
    ∴表面积=π×5×6+π×52=55πcm2,
    故答案为: 55πcm2.
    【点睛】
    本题考查了圆锥的计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键,本题体现了数形结合的数学思想.如果圆锥的底面半径为r,母线长为l,那么圆锥的表面积=πrl+πr2.
    17、.
    【解析】
    待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.
    【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:
    ∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.
    设正方形的边长为b,则b2=9,解得b=3.

    ∵正方形的中心在原点O,∴直线AB的解析式为:x=2.
    ∵点P(2a,a)在直线AB上,∴2a=2,解得a=3.∴P(2,3).
    ∵点P在反比例函数(k>0)的图象上,∴k=2×3=2.
    ∴此反比例函数的解析式为:.
    18、16000
    【解析】
    用毕业生总人数乘以“综合素质”等级为A的学生所占的比即可求得结果.
    【详解】
    ∵A,B,C,D,E五个等级在统计图中的高之比为2:3:3:1:1,
    ∴该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为80000×=16000,
    故答案为16000.
    【点睛】
    本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)见解析;(2)①正方形;② ;③见解析.
    【解析】
    (1)根据旋转作图的方法进行作图即可;
    (2)①根据旋转的性质可证AC=BC1=B1C2=B2C3,从而证出四边形CC1C2C3是菱形,再根据有一个角是直角的菱形是正方形即可作出判断,同理可判断四边形ABB1B2是正方形;
    ②根据相似图形的面积之比等相似比的平方即可得到结果;
    ③用两种不同的方法计算大正方形的面积化简即可得到勾股定理.
    【详解】
    (1)如图,

    (2)①四边形CC1C2C3和四边形ABB1B2是正方形.理由如下:
    ∵△ABC≌△BB1C1,
    ∴AC=BC1,BC==B1C1,AB=BB1.
    再根据旋转的性质可得:BC1=B1C2=B2C3,
    B2C1=B2C2=AC3,
    BB1=B1B2=AB2.
    ∴CC1=C1C2=C2C3=CC3
    AB=BB1=B1B2=AB2
    ∴四边形CC1C2C3和四边形ABB1B2是菱形.
    ∵∠C=∠ABB1=90°,
    ∴四边形CC1C2C3和四边形ABB1B2是正方形.
    ②∵四边形CC1C2C3和四边形ABB1B2是正方形,
    ∴四边形CC1C2C3∽四边形ABB1B2.
    ∴=
    ∵AB= ,CC1= ,
    ∴== .
    ③ 四边形CC1C2C3的面积= = ,
    四边形CC1C2C3的面积=4△ABC的面积+四边形ABB1B2的面积
    =4 + =
    ∴ =,
    化简得: =.
    【点睛】
    本题考查了旋转作图和旋转的性质,正方形的判定和性质,勾股定理,掌握相关知识是解题的关键.
    20、(1)x1=6,x2=﹣1;(2)﹣1≤x<1.
    【解析】
    (1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;
    (2)先求出不等式的解集,再求出不等式组的解集即可.
    【详解】
    (1)x2﹣5x﹣6=0,
    (x﹣6)(x+1)=0,
    x﹣6=0,x+1=0,
    x1=6,x2=﹣1;
    (2)
    ∵解不等式①得:x≥﹣1,
    解不等式②得:x<1,
    ∴不等式组的解集为﹣1≤x<1.
    【点睛】
    本题考查了解一元一次不等式组和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.
    21、(1)见解析;(2)见解析.
    【解析】
    (1)由旋转性质可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,则HF=FG=AD,所以可证△ADM≌△MHF,结论可得.
    (2)作FN⊥DG垂足为N,且MF=FG,可得HN=GN,且DM=MH,可证2MN=DG,由第一问可得2MF=AF,由cosα=cos∠FMG=,代入可证结论成立
    【详解】
    (1)由旋转性质可知:
    CD=CG且∠DCG=90°,
    ∴∠DGC=45°从而∠DGF=45°,
    ∵∠EFG=90°,
    ∴HF=FG=AD
    又由旋转可知,AD∥EF,
    ∴∠DAM=∠HFM,
    又∵∠DMA=∠HMF,
    ∴△ADM≌△FHM
    ∴AM=FM
    (2)作FN⊥DG垂足为N

    ∵△ADM≌△MFH
    ∴DM=MH,AM=MF=AF
    ∵FH=FG,FN⊥HG
    ∴HN=NG
    ∵DG=DM+HM+HN+NG=2(MH+HN)
    ∴MN=DG
    ∵cos∠FMG=
    ∴cos∠AMD=
    ∴=cosα
    【点睛】
    本题考查旋转的性质,矩形的性质,全等三角形的判定,三角函数,关键是构造直角三角形.
    22、路灯高CD为5.1米.
    【解析】
    根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.
    【详解】
    设CD长为x米,
    ∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,
    ∴MA∥CD∥BN,
    ∴EC=CD=x米,
    ∴△ABN∽△ACD,
    ∴=,即,
    解得:x=5.1.
    经检验,x=5.1是原方程的解,
    ∴路灯高CD为5.1米.
    【点睛】
    本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.
    23、-
    【解析】
    先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.
    【详解】
    原式=[ +]÷=[-+]÷=·=,
    当x=时,原式==-.
    【点睛】
    本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
    24、,
    【解析】
    分析:先把分值分母因式分解后约分,再进行通分得到原式=,然后把x的值代入计算即可.
    详解:原式=•﹣1
    =﹣
    =
    当x=+1时,原式==.
    点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
    25、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=﹣2.
    【解析】
    分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.
    (2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.
    详解:(2)解:由题意:.
    ∵,
    ∴原方程有两个不相等的实数根.
    (2)答案不唯一,满足()即可,例如:
    解:令,,则原方程为,
    解得:.
    点睛:考查一元二次方程根的判别式,
    当时,方程有两个不相等的实数根.
    当时,方程有两个相等的实数根.
    当时,方程没有实数根.
    26、 (1)18;(2)中位数;(3)100名.
    【解析】
    【分析】(1)根据条形统计图中的数据可以得到m的值;
    (2)根据题意可知应选择中位数比较合适;
    (3)根据统计图中的数据可以计该部门生产能手的人数.
    【详解】(1)由图可得,
    众数m的值为18,
    故答案为:18;
    (2)由题意可得,
    如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,
    故答案为:中位数;
    (3)300×=100(名),
    答:该部门生产能手有100名工人.
    【点睛】本题考查了条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.
    27、(1)购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.(2)有三种进货方案.方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件.(3)若全部销售完,方案一获利最大,最大利润是1800元.
    【解析】
    分析:(1)设购进甲种纪念品每件价格为x元,乙种纪念币每件价格为y元,根据题意得出关于x和y的二元一次方程组,解方程组即可得出结论;
    (2)设购进甲种纪念品a件,根据题意列出关于x的一元一次不等式,解不等式得出a的取值范围,即可得出结论;
    (3)找出总利润关于购买甲种纪念品a件的函数关系式,由函数的增减性确定总利润取最值时a的值,从而得出结论.
    详解:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元.
    由题意得:,
    解得:
    答:购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.
    (2)设购进甲种纪念品a(a≥60)件,则购进乙种纪念品(80﹣a)件.由题意得:
    100a+50(80﹣a)≤7100
    解得a≤1
    又a≥60
    所以a可取60、61、1.
    即有三种进货方案.
    方案一:甲种纪念品60件,乙种纪念品20件;
    方案二:甲种纪念品61件,乙种纪念品19件;
    方案三:甲种纪念品1件,乙种纪念品18件.
    (3)设利润为W,则W=20a+30(80﹣a)=﹣10a+2400
    所以W是a的一次函数,﹣10<0,W随a的增大而减小.
    所以当a最小时,W最大.此时W=﹣10×60+2400=1800
    答:若全部销售完,方案一获利最大,最大利润是1800元.
    点睛:本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,找到相应的数量关系是解决问题的关键,注意第二问应求整数解,要求学生能够运用所学知识解决实际问题.

    相关试卷

    2022年福建省沙县重点达标名校中考数学押题卷含解析:

    这是一份2022年福建省沙县重点达标名校中考数学押题卷含解析,共21页。试卷主要包含了下列计算正确的是,二次函数的对称轴是,我省2013年的快递业务量为1,下列运算正确的是等内容,欢迎下载使用。

    2022年福建省莆田市仙游县中考数学押题卷含解析:

    这是一份2022年福建省莆田市仙游县中考数学押题卷含解析,共22页。试卷主要包含了比1小2的数是,若|a|=﹣a,则a为,已知二次函数y=a等内容,欢迎下载使用。

    2022年福建省仙游县重点名校中考数学猜题卷含解析:

    这是一份2022年福建省仙游县重点名校中考数学猜题卷含解析,共26页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map