2022届山东省滨州市高三二模数学试题
展开高三数学试题
2022.5
本试卷共4页,共22小题,满分150分,考试用时120分钟.
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知全集,,则( )
A. B.
C. D.
2. 在正方体中,设直线与直线AD所成的角为,直线与平面所成的角为,则( )
A. B. C. D.
3. 设随机变量,则“”是“”的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不充分也不必要条件
4. 函数在单调递减,且为偶函数.若,则满足的的取值范围是
A. B. C. D.
5. 在中,M为BC边上任意一点,N为线段AM上任意一点,若(,),则取值范围是( )
A. B. C. D.
6. 已知直线,圆,则直线l与圆C的位置关系是( )
A. 相离 B. 相切 C. 相交 D. 不确定
7. 函数的部分图像如图所示,现将函数的图像向左平移个单位长度,再将图像上所有点的横坐标伸长为原来的倍(纵坐标不变),得到函数的图像,则的表达式可以为( )
- B.
C. D.
8. 已知椭圆和双曲线有相同的左、右焦点,,若,在第一象限内的交点为P,且满足,设,分别是,的离心率,则,的关系是( )
A. B.
C. D.
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9. 欧拉公式(本题中e为自然对数的底数,i为虚数单位)是由瑞士著名数学家欧拉创立,该公式建立了三角函数与指数函数的关系,在复变函数论中占有非常重要的地位,被誉为“数学中的天桥”依据欧拉公式,则下列结论中正确的是( )
A. 复数为纯虚数
B. 复数对应的点位于第二象限
C. 复数的共轭复数为
D. 复数在复平面内对应的点的轨迹是圆
10. 若实数a,b满足,则下列结论中正确的是( )
A. B.
C. D.
11. 设函数,则下列结论中正确的是( )
A. 的最小正周期为 B. 在单调递减
C. 的图象关于直线对称 D. 的值城为
12. 在边长为4的正方形ABCD中,如图1所示,E,F,M分别为BC,CD,BE的中点,分别沿AE,AF及EF所在直线把,和折起,使B,C,D三点重合于点P,得到三棱锥,如图2所示,则下列结论中正确的是( )
A.
B. 三棱锥的体积为4
C. 三棱锥外接球的表面积为
D. 过点M的平面截三棱锥的外接球所得截面的面积的取值范围为
三、填空题:本题共4小题,每小题5分,共20分.
13. __________.
14. 某社区对在抗击疫情工作中表现突出的3位医生、2位护士和1位社区工作人员进行表彰并合影留念.现将这6人随机排成一排,则3位医生中有且只有2位相邻的概率为__________.
15. 在中,内角A,B,C的对边分别为a,b,c,若,且,,成等差数列,则的面积的最大值为__________.
16. 某资料室在计算机使用中,出现如表所示的以一定规则排列的编码,表中的编码从左至右以及从上至下都是无限的,此表中,主对角线上的数字构成的数列1,2,5,10,17,…的通项公式为__________,编码99共出现__________次.
1 | 1 | 1 | 1 | 1 | 1 | … |
1 | 2 | 3 | 4 | 5 | 6 | … |
1 | 3 | 5 | 7 | 9 | 11 | … |
1 | 4 | 7 | 10 | 13 | 16 | … |
1 | 5 | 9 | 13 | 17 | 21 | … |
1 | 6 | 11 | 16 | 21 | 26 | … |
… | … | … | … | … | … | … |
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17. 锐角的内角A,B,C的对边分别为a,b,c,已知.
(1)求A;
(2)若,D为AB的中点,求CD的取值范围.
19. 新能源汽车是指除汽油、柴油发动机之外的所有其他能源汽车,被认为能减少空气污染和缓解能源短缺的压力.在当今提倡全球环保的前提下,新能源汽车越来越受到消费者的青睐,新能源汽车产业也必将成为未来汽车产业发展的导向与目标.某车企随机调查了今年3月份购买本车企生产的汽车的100位车主,经统计其购车种类与性别情况如下表:
单位:人
| 购置新能源汽车 | 购置传统燃油汽车 | 总计 |
男性 | 50 | 10 | 60 |
女性 | 25 | 15 | 40 |
总计 | 75 | 25 | 100 |
(1)根据表中数据,在犯错误的概率不超过2.5%的前提下,是否可以认为购车种类与性别有关;
(2)用样本估计总体,用本车企售出汽车样本的频率代替售出汽车的概率,从该车企今年3月份售出的汽车中,随机抽取3辆汽车,设被抽取的3辆汽车中属于传统燃油汽车的辆数为X,求X的分布列及数学期望.
附:,.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
21. 已知公差为d的等差数列和公比的等比数列中,,,.
(1)求数列和的通项公式;
(2)令,抽去数列的第3项、第6项、第9项、……、第3n项、……余下的项的顺序不变,构成一个新数列,求数列的前n项和.
23. 如图,在四棱锥中,底面,底面是等腰梯形,,,E是PB上一点,且.
(1)求证:平面;
(2)已知平面平面,求二面角的余弦值.
25. 已知抛物线在点处的切线斜率为.
(1)求抛物线C的方程;
(2)若抛物线C上存在不同的两点关于直线对称,求实数m的取值范围.
27. 已知函数.
(1)若对任意,恒成立,求实数m的取值范围;
(2)设函数在上的最小值为a,求证:.
高三数学试题
2022.5
本试卷共4页,共22小题,满分150分,考试用时120分钟.
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
【1题答案】
【答案】D
【2题答案】
【答案】C
【3题答案】
【答案】B
【4题答案】
【答案】A
【5题答案】
【答案】C
【6题答案】
【答案】D
【7题答案】
【答案】B
【8题答案】
【答案】D
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
【9题答案】
【答案】ABD
【10题答案】
【答案】BCD
【11题答案】
【答案】AD
【12题答案】
【答案】ABD
三、填空题:本题共4小题,每小题5分,共20分.
【13题答案】
【答案】
【14题答案】
【答案】##
【15题答案】
【答案】
【16题答案】
【答案】 ① ②. 6
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
【17题答案】
【答案】(1)
(2)
【18题答案】
【答案】(1)购车种类与性别有关;
(2)X分布列见解析,.
【19题答案】
【答案】(1),;
(2)
【20题答案】
【答案】(1)证明见解释
(2)
【21题答案】
【答案】(1);
(2).
【22题答案】
【答案】(1)
(2)证明见解析
2023届山东省滨州市高三二模数学试题含解析: 这是一份2023届山东省滨州市高三二模数学试题含解析,共20页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。
2023届山东省滨州市高三二模数学试题(含答案): 这是一份2023届山东省滨州市高三二模数学试题(含答案),共8页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。
2023届山东省济宁市高三二模考试数学试题: 这是一份2023届山东省济宁市高三二模考试数学试题,文件包含2023届山东省济宁市高三二模考试数学答案pdf、2023届山东省济宁市高三二模考试数学pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。