|试卷下载
搜索
    上传资料 赚现金
    2022年江苏省泰州市姜堰区张甸初级中学毕业升学考试模拟卷数学卷含解析
    立即下载
    加入资料篮
    2022年江苏省泰州市姜堰区张甸初级中学毕业升学考试模拟卷数学卷含解析01
    2022年江苏省泰州市姜堰区张甸初级中学毕业升学考试模拟卷数学卷含解析02
    2022年江苏省泰州市姜堰区张甸初级中学毕业升学考试模拟卷数学卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省泰州市姜堰区张甸初级中学毕业升学考试模拟卷数学卷含解析

    展开
    这是一份2022年江苏省泰州市姜堰区张甸初级中学毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,下列事件是确定事件的是等内容,欢迎下载使用。

    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知点,与点关于轴对称的点的坐标是( )
    A.B.C.D.
    2.桌面上有A、B两球,若要将B球射向桌面任意一边的黑点,则B球一次反弹后击中A球的概率是( )
    A.B.C.D.
    3.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是( )
    A.60°B.50°C.40°D.30°
    4.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数 (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )
    A.B. C.D.12
    5.如图,在矩形ABCD中AB=,BC=1,将矩形ABCD绕顶点B旋转得到矩形A'BC'D,点A恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)面积为( )
    A.B.C.D.
    6.关于的分式方程解为,则常数的值为( )
    A.B.C.D.
    7.下列运算正确的是( )
    A.(a2)5=a7 B.(x﹣1)2=x2﹣1
    C.3a2b﹣3ab2=3 D.a2•a4=a6
    8.由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则( )
    A.三个视图的面积一样大B.主视图的面积最小
    C.左视图的面积最小D.俯视图的面积最小
    9.下列事件是确定事件的是( )
    A.阴天一定会下雨
    B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门
    C.打开电视机,任选一个频道,屏幕上正在播放新闻联播
    D.在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书
    10.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于( )
    A.2cmB.3cmC.6cmD.7cm
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加_____m.
    12.不等式组的解集是 ▲ .
    13.若实数a、b在数轴上的位置如图所示,则代数式|b﹣a|+化简为_____.
    14.按照神舟号飞船环境控制与生命保障分系统的设计指标,“神舟”五号飞船返回舱的温度为21℃±4℃.该返回舱的最高温度为________℃.
    15.如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为_____.
    16.如图,在△ABC中,∠ABC=90°,AB=CB,F为AB延长线上一点,点E在BC上,且AE=CF,若∠CAE=32°,则∠ACF的度数为__________°.
    17.如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为 .
    三、解答题(共7小题,满分69分)
    18.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.
    (1)求此抛物线的解析式及顶点D的坐标;
    (2)点M是抛物线上的动点,设点M的横坐标为m.
    ①当∠MBA=∠BDE时,求点M的坐标;
    ②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.
    19.(5分)如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD于点E,且交BC于点F,AG平分∠BAC交CD于点G.
    求证:BF=AG.
    20.(8分)如图,一次函数y=kx+b的图象与反比例函数的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OA=OB.
    (1)求一次函数和反比例函数的表达式;
    (2)过点P(k,0)作平行于y轴的直线,交一次函数y=2x+n于点M,交反比例函数的图象于点N,若NM=NP,求n的值.
    21.(10分)将二次函数的解析式化为的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.
    22.(10分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.
    (1)求∠AOC的度数;
    (2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;
    (3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.
    23.(12分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.
    (1)求抛物线的解析式;
    (2)当PO+PC的值最小时,求点P的坐标;
    (3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.
    24.(14分)如图1,已知直线y=kx与抛物线y=交于点A(3,6).
    (1)求直线y=kx的解析式和线段OA的长度;
    (2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
    (3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.
    【详解】
    解:点,与点关于轴对称的点的坐标是,
    故选:C.
    【点睛】
    本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
    2、B
    【解析】
    试题解析:由图可知可以瞄准的点有2个.

    ∴B球一次反弹后击中A球的概率是.
    故选B.
    3、D
    【解析】
    由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.
    【详解】
    解:在△DEF中,∠1=60°,∠DEF=90°,
    ∴∠D=180°-∠DEF-∠1=30°.
    ∵AB∥CD,
    ∴∠2=∠D=30°.
    故选D.
    【点睛】
    本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.
    4、C
    【解析】
    设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE= 9求出k.
    【详解】
    ∵四边形OCBA是矩形,
    ∴AB=OC,OA=BC,
    设B点的坐标为(a,b),
    ∵BD=3AD,
    ∴D(,b),
    ∵点D,E在反比例函数的图象上,
    ∴=k,
    ∴E(a, ),
    ∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-• -•-••(b-)=9,
    ∴k=,
    故选:C
    【点睛】
    考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键.
    5、A
    【解析】
    本题首先利用A点恰好落在边CD上,可以求出A´C=BC´=1,又因为A´B=可以得出△A´BC为等腰直角三角形,即可以得出∠ABA´、∠DBD´的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA´和面积DA´D´
    【详解】
    先连接BD,首先求得正方形ABCD的面积为,由分析可以求出∠ABA´=∠DBD´=45°,即可以求得扇形ABA´的面积为,扇形BDD´的面积为,面积ADA´=面积ABCD-面积A´BC-扇形面积ABA´=;面积DA´D´=扇形面积BDD´-面积DBA´-面积BA´D´=,阴影部分面积=面积DA´D´+面积ADA´=
    【点睛】
    熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.
    6、D
    【解析】
    根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a的值即可.
    【详解】
    解:把x=4代入方程,得

    解得a=1.
    经检验,a=1是原方程的解
    故选D.
    点睛:此题考查了分式方程的解,分式方程注意分母不能为2.
    7、D
    【解析】
    根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.
    【详解】
    A、(a2)5=a10,故原题计算错误;
    B、(x﹣1)2=x2﹣2x+1,故原题计算错误;
    C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;
    D、a2•a4=a6,故原题计算正确;
    故选:D.
    【点睛】
    此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则.
    8、C
    【解析】
    试题分析:根据三视图的意义,可知正视图由5个面,左视图有3个面,俯视图有4个面,故可知主视图的面积最大.
    故选C
    考点:三视图
    9、D
    【解析】
    试题分析:找到一定发生或一定不发生的事件即可.
    A、阴天一定会下雨,是随机事件;
    B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;
    C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;
    D、在学校操场上向上抛出的篮球一定会下落,是必然事件.
    故选D.
    考点:随机事件.
    10、D
    【解析】
    【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.
    【详解】因为,AB=10cm,BC=4cm,
    所以,AC=AB-BC=10-4=6(cm)
    因为,点D是线段AC的中点,
    所以,CD=3cm,
    所以,BD=BC+CD=3+4=7(cm)
    故选D
    【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.
    二、填空题(共7小题,每小题3分,满分21分)
    11、1.
    【解析】
    根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案
    【详解】
    解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,
    抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),
    设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,
    ∴抛物线解析式为y=-0.5x1+1,
    当水面下降1.5米,通过抛物线在图上的观察可转化为:
    当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,
    可以通过把y=-1.5代入抛物线解析式得出:
    -1.5=-0.5x1+1,
    解得:x=±3,
    1×3-4=1,
    所以水面下降1.5m,水面宽度增加1米.
    故答案为1.
    【点睛】
    本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.
    12、﹣1<x≤1
    【解析】
    解一元一次不等式组.
    【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,
    解第一个不等式得,x>﹣1,
    解第二个不等式得,x≤1,
    ∴不等式组的解集是﹣1<x≤1.
    13、2a﹣b.
    【解析】
    直接利用数轴上a,b的位置进而得出b﹣a<0,a>0,再化简得出答案.
    【详解】
    解:由数轴可得:
    b﹣a<0,a>0,
    则|b﹣a|+
    =a﹣b+a
    =2a﹣b.
    故答案为2a﹣b.
    【点睛】
    此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.
    14、17℃.
    【解析】
    根据返回舱的温度为21℃±4℃,可知最高温度为21℃+4℃;最低温度为21℃-4℃.
    【详解】
    解:返回舱的最高温度为:21+4=25℃;
    返回舱的最低温度为:21-4=17℃;
    故答案为:17℃.
    【点睛】
    本题考查正数和负数的意义.±4℃指的是比21℃高于4℃或低于4℃.
    15、2
    【解析】
    只要证明△PBC是等腰直角三角形即可解决问题.
    【详解】
    解:∵∠APO=∠BPO=30°,
    ∴∠APB=60°,
    ∵PA=PC=PB,∠APC=30°,
    ∴∠BPC=90°,
    ∴△PBC是等腰直角三角形,
    ∵OA=1,∠APO=30°,
    ∴PA=2OA=2,
    ∴BC=PC=2,
    故答案为2.
    【点睛】
    本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明△PBC是等腰直角三角形.
    16、58
    【解析】
    根据HL证明Rt△CBF≌Rt△ABE,推出∠FCB=∠EAB,求出∠CAB=∠ACB=45°,
    求出∠BCF=∠BAE=13°,即可求出答案.
    【详解】
    解:∵∠ABC=90°,
    ∴∠ABE=∠CBF=90°,
    在Rt△CBF和Rt△ABE中

    ∴Rt△CBF≌Rt△ABE(HL),
    ∴∠FCB=∠EAB,
    ∵AB=BC,∠ABC=90°,
    ∴∠CAB=∠ACB=45°.
    ∵∠BAE=∠CAB﹣∠CAE=45°﹣32°=13°,
    ∴∠BCF=∠BAE=13°,
    ∴∠ACF=∠BCF+∠ACB=45°+13°=58°
    故答案为58
    【点睛】
    本题考查了全等三角形的性质和判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.
    17、15π.
    【解析】
    试题分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:×6π×5=15π.故答案为15π.
    考点:圆锥的计算.
    三、解答题(共7小题,满分69分)
    18、(1)(1,4)(2)①点M坐标(﹣,)或(﹣,﹣);②m的值为 或
    【解析】
    (1)利用待定系数法即可解决问题;
    (2)①根据tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.
    【详解】
    解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,
    得到,解得,
    ∴抛物线的解析式为y=﹣x2+2x+3,
    ∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,
    ∴顶点D坐标(1,4);
    (2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),
    ∴MG=|﹣m2+2m+3|,BG=3﹣m,
    ∴tan∠MBA=,
    ∵DE⊥x轴,D(1,4),
    ∴∠DEB=90°,DE=4,OE=1,
    ∵B(3,0),
    ∴BE=2,
    ∴tan∠BDE==,
    ∵∠MBA=∠BDE,
    ∴=,
    当点M在x轴上方时, =,
    解得m=﹣或3(舍弃),
    ∴M(﹣,),
    当点M在x轴下方时, =,
    解得m=﹣或m=3(舍弃),
    ∴点M(﹣,﹣),
    综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);
    ②如图中,∵MN∥x轴,
    ∴点M、N关于抛物线的对称轴对称,
    ∵四边形MPNQ是正方形,
    ∴点P是抛物线的对称轴与x轴的交点,即OP=1,
    易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,
    当﹣m2+2m+3=1﹣m时,解得m=,
    当﹣m2+2m+3=m﹣1时,解得m=,
    ∴满足条件的m的值为或.
    【点睛】
    本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
    19、见解析
    【解析】
    根据角平分线的性质和直角三角形性质求∠BAF=∠ACG.进一步证明△ABF≌△CAG,从而证明BF=AG.
    【详解】
    证明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,
    又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,
    又∵∠BAC=90°,AE⊥CD,
    ∴∠BAF+∠ADE=90°,∠ACG +∠ADE=90°,
    ∴∠BAF=∠ACG. 又∵AB=CA,

    ∴△ABF≌△CAG(ASA),
    ∴BF=AG
    【点睛】
    此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.
    20、20(1)y=2x-5, y=;(2)n=-4或n=1
    【解析】
    (1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;
    (2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x-n可得答案.
    【详解】
    解:(1)∵点A的坐标为(4,3),
    ∴OA=5,
    ∵OA=OB,
    ∴OB=5,
    ∵点B在y轴的负半轴上,
    ∴点B的坐标为(0,-5),
    将点A(4,3)代入反比例函数解析式y=中,
    ∴反比例函数解析式为y=,
    将点A(4,3)、B(0,-5)代入y=kx+b中,得:
    k=2、b=-5,
    ∴一次函数解析式为y=2x-5;
    (2)由(1)知k=2,
    则点N的坐标为(2,6),
    ∵NP=NM,
    ∴点M坐标为(2,0)或(2,12),
    分别代入y=2x-n可得:
    n=-4或n=1.
    【点睛】
    本题主要考查直线和双曲线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式及分类讨论思想的运用.
    21、开口方向:向上;点坐标:(-1,-3);称轴:直线.
    【解析】
    将二次函数一般式化为顶点式,再根据a的值即可确定该函数图像的开口方向、顶点坐标和对称轴.
    【详解】
    解:,


    ∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线.
    【点睛】
    熟练掌握将一般式化为顶点式是解题关键.
    22、(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).
    【解析】
    (1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.
    (2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.
    (3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.
    【详解】
    (1)∵OA=OC,∠OAC=60°,
    ∴△OAC是等边三角形,
    故∠AOC=60°.
    (2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;
    ∴AC=OP,因此△OCP是直角三角形,且∠OCP=90°,
    而OC是⊙O的半径,
    故PC与⊙O的位置关系是相切.
    (3)如图;有三种情况:
    ①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣2);
    劣弧MA的长为:;
    ②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣2);
    劣弧MA的长为:;
    ③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,2);
    优弧MA的长为:;
    ④当C、M重合时,C点符合M点的要求,此时M4(2,2);
    优弧MA的长为:;
    综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为对应的M点坐标分别为:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).
    【点睛】
    本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.
    23、(1)y=x2+3x;(2)当PO+PC的值最小时,点P的坐标为(2,);(3)存在,具体见解析.
    【解析】
    (1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
    (2)D与P重合时有最小值,求出点D的坐标即可;
    (3)存在,分别根据①AC为对角线,②AC为边,两种情况,分别求解即可.
    【详解】
    (1)在矩形OABC中,OA=4,OC=3,
    ∴A(4,0),C(0,3),
    ∵抛物线经过O、A两点,且顶点在BC边上,
    ∴抛物线顶点坐标为(2,3),
    ∴可设抛物线解析式为y=a(x﹣2)2+3,
    把A点坐标代入可得0=a(4﹣2)2+3,解得a=,
    ∴抛物线解析式为y=(x﹣2)2+3,即y=x2+3x;
    (2)∵点P在抛物线对称轴上,∴PA=PO,∴PO+PC= PA+PC.
    ∴当点P与点D重合时,PA+PC= AC;当点P不与点D重合时,PA+PC> AC;
    ∴当点P与点D重合时,PO+PC的值最小,
    设直线AC的解析式为y=kx+b,
    根据题意,得解得
    ∴直线AC的解析式为,
    当x=2时,,
    ∴当PO+PC的值最小时,点P的坐标为(2,);
    (3)存在.
    ①AC为对角线,当四边形AQCP为平行四边形,点Q为抛物线的顶点,即Q(2,3),则P(2,0);
    ②AC为边,当四边形AQPC为平行四边形,点C向右平移2个单位得到P,则点A向右平移2个单位得到点Q,则Q点的横坐标为6,当x=6时,,此时Q(6,−9),则点A(4,0)向右平移2个单位,向下平移9个单位得到点Q,所以点C(0,3)向右平移2个单位,向下平移9个单位得到点P,则P(2,−6);
    当四边形APQC为平行四边形,点A向左平移2个单位得到P,则点C向左平移2个单位得到点Q,则Q点的横坐标为−2,当x=−2时,,此时Q(−2,−9),则点C(0,3)向左平移2个单位,向下平移12个单位得到点Q,所以点A(4,0)向左平移2个单位,向下平移12个单位得到点P,则P(2,−12);
    综上所述,P(2,0),Q(2,3)或P(2,−6),Q(6,−9)或P(2,−12),Q(−2,−9).
    【点睛】
    二次函数的综合应用,涉及矩形的性质、待定系数法、平行四边形的性质、方程思想及分类讨论思想等知识.
    24、(1)y=2x,OA=,
    (2)是一个定值,,
    (3)当时,E点只有1个,当时,E点有2个。
    【解析】(1)把点A(3,6)代入y=kx 得;
    ∵6=3k,
    ∴k=2,
    ∴y=2x.
    OA=.
    (2)是一个定值,理由如下:
    如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.
    ①当QH与QM重合时,显然QG与QN重合,
    此时;
    ②当QH与QM不重合时,
    ∵QN⊥QM,QG⊥QH
    不妨设点H,G分别在x、y轴的正半轴上,
    ∴∠MQH=∠GQN,
    又∵∠QHM=∠QGN=90°
    ∴△QHM∽△QGN…(5分),
    ∴,
    当点P、Q在抛物线和直线上不同位置时,同理可得.①①
    如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R
    ∵∠AOD=∠BAE,
    ∴AF=OF,
    ∴OC=AC=OA=
    ∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
    ∴△AOR∽△FOC,
    ∴,
    ∴OF=,
    ∴点F(,0),
    设点B(x,),
    过点B作BK⊥AR于点K,则△AKB∽△ARF,
    ∴,
    即,
    解得x1=6,x2=3(舍去),
    ∴点B(6,2),
    ∴BK=6﹣3=3,AK=6﹣2=4,
    ∴AB=5
    (求AB也可采用下面的方法)
    设直线AF为y=kx+b(k≠0)把点A(3,6),点F(,0)代入得
    k=,b=10,
    ∴,
    ∴,
    ∴(舍去),,
    ∴B(6,2),
    ∴AB=5
    在△ABE与△OED中
    ∵∠BAE=∠BED,
    ∴∠ABE+∠AEB=∠DEO+∠AEB,
    ∴∠ABE=∠DEO,
    ∵∠BAE=∠EOD,
    ∴△ABE∽△OED.
    设OE=x,则AE=﹣x (),
    由△ABE∽△OED得,

    ∴()
    ∴顶点为(,)
    如答图3,
    当时,OE=x=,此时E点有1个;
    当时,任取一个m的值都对应着两个x值,此时E点有2个.
    ∴当时,E点只有1个
    当时,E点有2个
    相关试卷

    江苏省姜堰区张甸初级中学2022年中考数学模拟精编试卷含解析: 这是一份江苏省姜堰区张甸初级中学2022年中考数学模拟精编试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列图形是中心对称图形的是,图为小明和小红两人的解题过程,的算术平方根是等内容,欢迎下载使用。

    2022年江苏省泰州市姜堰区实验初级中学初中数学毕业考试模拟冲刺卷含解析: 这是一份2022年江苏省泰州市姜堰区实验初级中学初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了计算的结果为等内容,欢迎下载使用。

    2022届江苏省宜兴市陶都中学毕业升学考试模拟卷数学卷含解析: 这是一份2022届江苏省宜兴市陶都中学毕业升学考试模拟卷数学卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,的值是,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map