2022年湖北省武汉市南湖区中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列运算正确的是( )
A.a12÷a4=a3 B.a4•a2=a8 C.(﹣a2)3=a6 D.a•(a3)2=a7
2.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是( )
A.(2017,0) B.(2017,)
C.(2018,) D.(2018,0)
3.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,则下列结论:
①a、b同号;
②当x=1和x=3时,函数值相等;
③4a+b=1;
④当y=﹣2时,x的值只能取1;
⑤当﹣1<x<5时,y<1.
其中,正确的有( )
A.2个 B.3个 C.4个 D.5个
4.如图,直线a∥b,点A在直线b上,∠BAC=100°,∠BAC的两边与直线a分别交于B、C两点,若∠2=32°,则∠1的大小为( )
A.32° B.42° C.46° D.48°
5.已知点M、N在以AB为直径的圆O上,∠MON=x°,∠MAN= y°, 则点(x,y)一定在( )
A.抛物线上 B.过原点的直线上 C.双曲线上 D.以上说法都不对
6.下列运算正确的是( )
A.5ab﹣ab=4 B.a6÷a2=a4 C. D.(a2b)3=a5b3
7.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为( )
A. B. C. D.
8.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是( )
A.85° B.105° C.125° D.160°
9.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为( )
A. B.2 C. D.
10.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的( )
A.平均数 B.中位数 C.众数 D.方差
11.广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为( )
A.3.65×103 B.3.65×104 C.3.65×105 D.3.65×106
12.已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是( )
A.k≠2 B.k>2 C.0<k<2 D.0≤k<2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=_____.
14.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是______.
15.如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_____. (写出一个答案即可)
16.对于二次函数y=x2﹣4x+4,当自变量x满足a≤x≤3时,函数值y的取值范围为0≤y≤1,则a的取值范围为__.
17.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.
18.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在△ABC中,∠C=90°.作∠BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面积.
20.(6分)如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且,.
求反比例函数和一次函数的表达式;直接写出关于的不等式的解集.
21.(6分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
22.(8分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.用树状图或列表等方法列出所有可能出现的结果;求两次摸到的球的颜色不同的概率.
23.(8分)如图,在平行四边形ABCD中,DB⊥AB,点E是BC边的中点,过点E作EF⊥CD,垂足为F,交AB的延长线于点G.
(1)求证:四边形BDFG是矩形;
(2)若AE平分∠BAD,求tan∠BAE的值.
24.(10分)先化简,再求值:(m+2﹣)•,其中m=﹣.
25.(10分)如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率.
26.(12分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).请你用画树状图或列表的方法,写出点M所有可能的坐标;求点M(x,y)在函数y=﹣的图象上的概率.
27.(12分)先化简,再求值:,其中与2,3构成的三边,且为整数.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
分别根据同底数幂的除法、乘法和幂的乘方的运算法则逐一计算即可得.
【详解】
解:A、a12÷a4=a8,此选项错误;
B、a4•a2=a6,此选项错误;
C、(-a2)3=-a6,此选项错误;
D、a•(a3)2=a•a6=a7,此选项正确;
故选D.
【点睛】
本题主要考查幂的运算,解题的关键是掌握同底数幂的除法、乘法和幂的乘方的运算法则.
2、C
【解析】
本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.
【详解】
.解:∵正六边形ABCDEF一共有6条边,即6次一循环;
∴2017÷6=336余1,
∴点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,
∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,
∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为,
∴点F滚动2107次时的坐标为(2018,),
故选C.
【点睛】
本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.
3、A
【解析】
根据二次函数的性质和图象可以判断题目中各个小题是否成立.
【详解】
由函数图象可得,
a>1,b<1,即a、b异号,故①错误,
x=-1和x=5时,函数值相等,故②错误,
∵-=2,得4a+b=1,故③正确,
由图象可得,当y=-2时,x=1或x=4,故④错误,
由图象可得,当-1<x<5时,y<1,故⑤正确,
故选A.
【点睛】
考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
4、D
【解析】
根据平行线的性质与对顶角的性质求解即可.
【详解】
∵a∥b,
∴∠BCA=∠2,
∵∠BAC=100°,∠2=32°
∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.
∴∠1=∠CBA=48°.
故答案选D.
【点睛】
本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.
5、B
【解析】
由圆周角定理得出∠MON与∠MAN的关系,从而得出x与y的关系式,进而可得出答案.
【详解】
∵∠MON与∠MAN分别是弧MN所对的圆心角与圆周角,
∴∠MAN=∠MON,
∴ ,
∴点(x,y)一定在过原点的直线上.
故选B.
【点睛】
本题考查了圆周角定理及正比例函数图像的性质,熟练掌握圆周角定理是解答本题的关键.
6、B
【解析】
根据同底数幂的除法,合并同类项,积的乘方的运算法则进行逐一运算即可.
【详解】
解:A、5ab﹣=4ab,此选项运算错误,
B、a6÷a2=a4,此选项运算正确,
C、,选项运算错误,
D、(a2b)3=a6b3,此选项运算错误,
故选B.
【点睛】
此题考查了同底数幂的除法,合并同类项,积的乘方,熟练掌握运算法则是解本题的关键.
7、D
【解析】
先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.
【详解】
解:∵∠ACB=90°,AB=5,AC=4,
∴BC=3,
在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.
∴∠A=∠BCD.
∴tan∠BCD=tanA==,
故选D.
【点睛】
本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.
8、C
【解析】
首先求得AB与正东方向的夹角的度数,即可求解.
【详解】
根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,
故选:C.
【点睛】
本题考查了方向角,正确理解方向角的定义是关键.
9、C
【解析】
根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.
【详解】
如图所示,
单位圆的半径为1,则其内接正六边形ABCDEF中,
△AOB是边长为1的正三角形,
所以正六边形ABCDEF的面积为
S6=6××1×1×sin60°=.
故选C.
【点睛】
本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.
10、B
【解析】
根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.
【详解】
因为需要保证不少于50%的骑行是免费的,
所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,
故选B.
【点睛】
本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
11、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将365000这个数用科学记数法表示为3.65×1.
故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12、D
【解析】
直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0
当经过第一、二、四象限时, ,解得0
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
根据∠A的正弦求出∠A=60°,再根据30°的正弦值求解即可.
【详解】
解:∵,
∴∠A=60°,
∴.
故答案为.
【点睛】
本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.
14、1
【解析】
解:3=2+1;
5=3+2;
8=5+3;
13=8+5;
…
可以发现:从第三个数起,每一个数都等于它前面两个数的和.
则第8个数为13+8=21;
第9个数为21+13=34;
第10个数为34+21=1.
故答案为1.
点睛:此题考查了数字的有规律变化,解答此类题目的关键是要求学生通对题目中给出的图表、数据等认真进行分析、归纳并发现其中的规律,并应用规律解决问题.此类题目难度一般偏大.
15、答案不唯一,如:AD
【解析】
根据勾股定理求出,根据无理数的估算方法解答即可.
【详解】
由勾股定理得:,.
故答案为答案不唯一,如:AD.
【点睛】
本题考查了无理数的估算和勾股定理,如果直角三角形的两条直角边长分别是,,斜边长为,那么.
16、1≤a≤1
【解析】
根据y的取值范围可以求得相应的x的取值范围.
【详解】
解:∵二次函数y=x1﹣4x+4=(x﹣1)1,
∴该函数的顶点坐标为(1,0),对称轴为:x=﹣,
把y=0代入解析式可得:x=1,
把y=1代入解析式可得:x1=3,x1=1,
所以函数值y的取值范围为0≤y≤1时,自变量x的范围为1≤x≤3,
故可得:1≤a≤1,
故答案为:1≤a≤1.
【点睛】
此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
17、1.
【解析】
设P(0,b),
∵直线APB∥x轴,
∴A,B两点的纵坐标都为b,
而点A在反比例函数y=的图象上,
∴当y=b,x=-,即A点坐标为(-,b),
又∵点B在反比例函数y=的图象上,
∴当y=b,x=,即B点坐标为(,b),
∴AB=-(-)=,
∴S△ABC=•AB•OP=••b=1.
18、2:1
【解析】
先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.
故答案为2:1.
点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)答案见解析;(2)
【解析】
(1)根据三角形角平分线的定义,即可得到AD;
(2)过D作于DE⊥ABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.
【详解】
解:(1)如图所示,AD即为所求;
(2)如图,过D作DE⊥AB于E,
∵AD平分∠BAC,
∴DE=CD=4,
∴S△ABD=AB·DE=20cm2.
【点睛】
掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.
20、(1)y=-.y=x-1.(1)x<2.
【解析】
分析:(1)根据待定系数法即可求出反比例函数和一次函数的表达式.
详解:(1)∵, 点A(5,2),点B(2,3),
∴
又∵点C在y轴负半轴,点D在第二象限,
∴点C的坐标为(2,-1),点D的坐标为(-1,3).
∵点在反比例函数y=的图象上,
∴
∴反比例函数的表达式为
将A(5,2)、B(2,-1)代入y=kx+b,
,解得:
∴一次函数的表达式为.
(1)将代入,整理得:
∵
∴一次函数图象与反比例函数图象无交点.
观察图形,可知:当x<2时,反比例函数图象在一次函数图象上方,
∴不等式>kx+b的解集为x<2.
点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
21、
【解析】
分析:列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.
详解:列表如下:
红
红
白
黑
红
﹣﹣﹣
(红,红)
(白,红)
(黑,红)
红
(红,红)
﹣﹣﹣
(白,红)
(黑,红)
白
(红,白)
(红,白)
﹣﹣﹣
(黑,白)
黑
(红,黑)
(红,黑)
(白,黑)
﹣﹣﹣
所有等可能的情况有12种,其中两次都摸到红球有2种可能,
则P(两次摸到红球)==.
点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
22、(1)详见解析;(2).
【解析】
试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
(2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.
试题解析:(1)如图:
,
所有可能的结果为(白1,白2)、(白1,红)、(白2,白1)、(白2,红)、(红,白1)、(红,白2);
(2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为.
23、(1)见解析;(2)
【解析】
(1)根据矩形的判定证明即可;
(2)根据平行四边形的性质和等边三角形的性质解答即可.
【详解】
证明:(1)∵BD⊥AB,EF⊥CD,
∴∠ABD=90°,∠EFD=90°,
根据题意,在▱ABCD中,AB∥CD,
∴∠BDC=∠ABD=90°,
∴BD∥GF,
∴四边形BDFG为平行四边形,
∵∠BDC=90°,
∴四边形BDFG为矩形;
(2)∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵AD∥BC,
∴∠BEA=∠DAE,
∴∠BAE=∠BEA,
∴BA=BE,
∵在Rt△BCD中,点E为BC边的中点,
∴BE=ED=EC,
∵在▱ABCD中,AB=CD,
∴△ECD为等边三角形,∠C=60°,
∴,
∴.
【点睛】
本题考查了矩形的判定、等边三角形的判定和性质,根据平行四边形的性质和等边三角形的性质解答是解题关键.
24、-2(m+3),-1.
【解析】
此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算.
【详解】
解:(m+2-)•,
=,
=-,
=-2(m+3).
把m=-代入,得,
原式=-2×(-+3)=-1.
25、
【解析】
根据列表法先画出列表,再求概率.
【详解】
解:列表如下:
2
3
5
6
2
(2,3)
(2,5)
(2,6)
3
(3,2)
(3,5)
(3,6)
5
(5,2)
(5,3)
(5,6)
6
(6,2)
(6,3)
(6,5)
由表可知共有12种等可能结果,其中数字之和为偶数的有4种,
所以P(数字之和都是偶数).
【点睛】
此题重点考查学生对概率的应用,掌握列表法是解题的关键.
26、(1)树状图见解析,则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2).
【解析】
试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),直接利用概率公式求解即可求得答案.
试题解析:(1)树状图如下图:
则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),
∴点M(x,y)在函数y=﹣的图象上的概率为:.
考点:列表法或树状图法求概率.
27、1
【解析】
试题分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a的值,然后代入进行计算即可.
试题解析:原式= ,
∵a与2、3构成△ABC的三边,
∴3−2 又∵a为整数,
∴a=2或3或4,
∵当x=2或3时,原分式无意义,应舍去,
∴当a=4时,原式==1
湖北省武汉市武珞路中学2022年中考数学最后冲刺浓缩精华卷含解析: 这是一份湖北省武汉市武珞路中学2022年中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,计算 的结果是,下列图形中,主视图为①的是,已知,则的值为,﹣2×等内容,欢迎下载使用。
2022年杭州市西湖区中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年杭州市西湖区中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了某排球队名场上队员的身高,1﹣的相反数是,下列运算正确的是等内容,欢迎下载使用。
2022届湖北省枣阳市阳光中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届湖北省枣阳市阳光中学中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,- 的绝对值是等内容,欢迎下载使用。