|试卷下载
搜索
    上传资料 赚现金
    2022年福建省龙岩市永定区、连城县重点名校中考考前最后一卷数学试卷含解析
    立即下载
    加入资料篮
    2022年福建省龙岩市永定区、连城县重点名校中考考前最后一卷数学试卷含解析01
    2022年福建省龙岩市永定区、连城县重点名校中考考前最后一卷数学试卷含解析02
    2022年福建省龙岩市永定区、连城县重点名校中考考前最后一卷数学试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年福建省龙岩市永定区、连城县重点名校中考考前最后一卷数学试卷含解析

    展开
    这是一份2022年福建省龙岩市永定区、连城县重点名校中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,的值是,下列四个实数中,比5小的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为(  )

    A.3 B.4 C.5 D.6
    2.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加(  )

    A.4cm B.8cm C.(a+4)cm D.(a+8)cm
    3.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是(  )

    A.AE=BF B.∠ADE=∠BEF
    C.△DEF是等边三角形 D.△BEF是等腰三角形
    4.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是(  )

    A.一次性购买数量不超过10本时,销售价格为20元/本
    B.a=520
    C.一次性购买10本以上时,超过10本的那部分书的价格打八折
    D.一次性购买20本比分两次购买且每次购买10本少花80元
    5.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.有下列结论:①abc<0;②3b+4c<0;③c>﹣1;④关于x的方程ax2+bx+c=0有一个根为﹣,其中正确的结论个数是(  )

    A.1 B.2 C.3 D.4
    6.下列关于事件发生可能性的表述,正确的是(  )
    A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件
    B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖
    C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品
    D.掷两枚硬币,朝上的一面是一正面一反面的概率为
    7.的值是(  )
    A.1 B.﹣1 C.3 D.﹣3
    8.下列四个实数中,比5小的是( )
    A. B. C. D.
    9.已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为( )
    A.13 B.11或13 C.11 D.12
    10.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F, S△AEF=3,则S△FCD为(  )

    A.6 B.9 C.12 D.27
    11.如图,在▱ABCD中,AB=2,BC=1.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是(  )

    A. B.1 C. D.
    12.关于的一元二次方程有两个不相等的实数根,则的取值范围为( )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在△ABC中,AB=AC=10cm,F为AB上一点,AF=2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0<t<5),连D交CF于点G.若CG=2FG,则t的值为_____.

    14.不等式组的最小整数解是_____.
    15.计算:.
    16.如图,在正方形ABCD中,BC=2,E、F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于点G,连接DG,则DG的最小值为_______.

    17.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是(  )
    A. B. C. D.
    18.不等式组的解集是  ▲ .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A组50~60;B组60~70;C组70~80;D组80~90;E组90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.抽取学生的总人数是   人,扇形C的圆心角是   °;补全频数直方图;该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?

    20.(6分)已知抛物线y=ax2+bx+c.
    (Ⅰ)若抛物线的顶点为A(﹣2,﹣4),抛物线经过点B(﹣4,0)
    ①求该抛物线的解析式;
    ②连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点.
    设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6≤S≤6+8时,求x的取值范围;
    (Ⅱ)若a>0,c>1,当x=c时,y=0,当0<x<c时,y>0,试比较ac与l的大小,并说明理由.
    21.(6分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,≈1.73)

    22.(8分)先化简,再求值:(1﹣)÷,其中x是不等式组的整数解
    23.(8分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
    求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD 的面积.
    24.(10分)关于x的一元二次方程x2+(m-1)x-(2m+3)=1.
    (1)求证:方程总有两个不相等的实数根;
    (2)写出一个m的值,并求出此时方程的根.
    25.(10分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?
    26.(12分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:
    七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.
    27.(12分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.商场第一次购入的空调每台进价是多少元?商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    如图所示,∵(a+b)2=21
    ∴a2+2ab+b2=21,
    ∵大正方形的面积为13,2ab=21﹣13=8,
    ∴小正方形的面积为13﹣8=1.
    故选C.
    考点:勾股定理的证明.
    2、B
    【解析】
    【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.
    【详解】∵原正方形的周长为acm,
    ∴原正方形的边长为cm,
    ∵将它按图的方式向外等距扩1cm,
    ∴新正方形的边长为(+2)cm,
    则新正方形的周长为4(+2)=a+8(cm),
    因此需要增加的长度为a+8﹣a=8cm,
    故选B.
    【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式.
    3、D
    【解析】
    连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.
    【详解】
    连接BD,∵四边形ABCD是菱形,
    ∴AD=AB,∠ADB=∠ADC,AB∥CD,
    ∵∠A=60°,
    ∴∠ADC=120°,∠ADB=60°,
    同理:∠DBF=60°,
    即∠A=∠DBF,
    ∴△ABD是等边三角形,
    ∴AD=BD,
    ∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
    ∴∠ADE=∠BDF,
    ∵在△ADE和△BDF中,

    ∴△ADE≌△BDF(ASA),
    ∴DE=DF,AE=BF,故A正确;
    ∵∠EDF=60°,
    ∴△EDF是等边三角形,
    ∴C正确;
    ∴∠DEF=60°,
    ∴∠AED+∠BEF=120°,
    ∵∠AED+∠ADE=180°-∠A=120°,
    ∴∠ADE=∠BEF;
    故B正确.
    ∵△ADE≌△BDF,
    ∴AE=BF,
    同理:BE=CF,
    但BE不一定等于BF.
    故D错误.
    故选D.
    【点睛】
    本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.
    4、D
    【解析】
    A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.
    【详解】
    解:A、∵200÷10=20(元/本),
    ∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;
    C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,
    ∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;
    B、∵200+16×(30﹣10)=520(元),
    ∴a=520,B选项正确;
    D、∵200×2﹣200﹣16×(20﹣10)=40(元),
    ∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.
    故选D.
    【点睛】
    考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.
    5、B
    【解析】
    由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由对称轴=2可知a=,由图象可知当x=1时,y>0,可判断②;由OA=OC,且OA<1,可判断③;把-代入方程整理可得ac2-bc+c=0,结合③可判断④;从而可得出答案.
    【详解】
    解:∵图象开口向下,∴a<0,
    ∵对称轴为直线x=2,∴>0,∴b>0,
    ∵与y轴的交点在x轴的下方,∴c<0,
    ∴abc>0,故①错误.
    ∵对称轴为直线x=2,∴=2,∴a=,
    ∵由图象可知当x=1时,y>0,
    ∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,
    ∴3b+4c>0,故②错误.
    ∵由图象可知OA<1,且OA=OC,
    ∴OC<1,即-c<1,
    ∴c>-1,故③正确.
    ∵假设方程的一个根为x=-,把x=-代入方程可得+c=0,
    整理可得ac-b+1=0,
    两边同时乘c可得ac2-bc+c=0,
    ∴方程有一个根为x=-c,
    由③可知-c=OA,而当x=OA是方程的根,
    ∴x=-c是方程的根,即假设成立,故④正确.
    综上可知正确的结论有三个:③④.
    故选B.
    【点睛】
    本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.
    6、C
    【解析】
    根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可.
    【详解】
    解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误.
    B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.
    C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.
    D. 掷两枚硬币,朝上的一面是一正面一反面的概率为,故错误.
    故选:C.
    【点睛】
    考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比.
    7、B
    【解析】
    直接利用立方根的定义化简得出答案.
    【详解】
    因为(-1)3=-1,
    =﹣1.
    故选:B.
    【点睛】
    此题主要考查了立方根,正确把握立方根的定义是解题关键.,
    8、A
    【解析】
    首先确定无理数的取值范围,然后再确定是实数的大小,进而可得答案.
    【详解】
    解:A、∵5<<6,
    ∴5﹣1<﹣1<6﹣1,
    ∴﹣1<5,故此选项正确;
    B、∵
    ∴,故此选项错误;
    C、∵6<<7,
    ∴5<﹣1<6,故此选项错误;
    D、∵4<<5,
    ∴,故此选项错误;
    故选A.
    【点睛】
    考查无理数的估算,掌握无理数估算的方法是解题的关键.通常使用夹逼法.
    9、B
    【解析】
    试题解析:x2-8x+15=0,
    分解因式得:(x-3)(x-5)=0,
    可得x-3=0或x-5=0,
    解得:x1=3,x2=5,
    若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;
    若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,
    综上,△ABC的周长为11或1.
    故选B.
    考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.
    10、D
    【解析】
    先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.
    【详解】
    解:∵四边形ABCD是平行四边形,AE:EB=1:2,
    ∴AE:CD=1:3,
    ∵AB∥CD,
    ∴∠EAF=∠DCF,
    ∵∠DFC=∠AFE,
    ∴△AEF∽△CDF,
    ∵S△AEF=3,
    ∴==()2,
    解得S△FCD=1.
    故选D.
    【点睛】
    本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.
    11、B
    【解析】
    分析:只要证明BE=BC即可解决问题;
    详解:∵由题意可知CF是∠BCD的平分线,
    ∴∠BCE=∠DCE.
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠DCE=∠E,∠BCE=∠AEC,
    ∴BE=BC=1,
    ∵AB=2,
    ∴AE=BE-AB=1,
    故选B.
    点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.
    12、B
    【解析】
    试题分析:根据题意得△=32﹣4m>0,
    解得m<.
    故选B.
    考点:根的判别式.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    过点C作CH∥AB交DE的延长线于点H,则,证明,可求出CH,再证明,由比例线段可求出t的值.
    【详解】
    如下图,过点C作CH∥AB交DE的延长线于点H,
    则,

    ∵DF∥CH,
    ∴,
    ∴,
    ∴,
    同理,
    ∴,
    ∴,解得t=1,t=(舍去),
    故答案为:1.
    【点睛】
    本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键.
    14、-1
    【解析】
    分析:先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.
    详解: .
    ∵解不等式①得:x>-3,
    解不等式②得:x≤1,
    ∴不等式组的解集为-3<x≤1,
    ∴不等式组的最小整数解是-1,
    故答案为:-1.
    点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.
    15、3+
    【解析】
    本题涉及零指数幂、负指数幂、绝对值、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
    【详解】
    原式=2×+2﹣+1,
    =2+2﹣+1,
    =3+.
    【点睛】
    本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数、绝对值等考点的运算
    16、﹣1
    【解析】
    先由图形确定:当O、G、D共线时,DG最小;根据正方形的性质证明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的长,从而得DG的最小值.
    【详解】

    在正方形ABCD中,AB=BC,∠ABC=∠BCD,
    在△ABE和△BCF中,

    ∴△ABE≌△BCF(SAS),
    ∴∠BAE=∠CBF,
    ∵∠CBF+∠ABF=90°
    ∴∠BAE+∠ABF=90°
    ∴∠AGB=90°
    ∴点G在以AB为直径的圆上,
    由图形可知:当O、G、D在同一直线上时,DG有最小值,如图所示:
    ∵正方形ABCD,BC=2,
    ∴AO=1=OG
    ∴OD=,
    ∴DG=−1,
    故答案为−1.
    【点睛】
    本题考查了正方形的性质与全等三角形的判定与性质,解题的关键是熟练的掌握正方形的性质与全等三角形的判定与性质.
    17、A
    【解析】
    该班男生有x人,女生有y人.根据题意得:,
    故选D.
    考点:由实际问题抽象出二元一次方程组.
    18、﹣1<x≤1
    【解析】
    解一元一次不等式组.
    【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,
    解第一个不等式得,x>﹣1,
    解第二个不等式得,x≤1,
    ∴不等式组的解集是﹣1<x≤1.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)300、144;(2)补全频数分布直方图见解析;(3)该校创新意识不强的学生约有528人.
    【解析】
    (1)由D组频数及其所占比例可得总人数,用360°乘以C组人数所占比例可得;
    (2)用总人数分别乘以A、B组的百分比求得其人数,再用总人数减去A、B、C、D的人数求得E组的人数可得;
    (3)用总人数乘以样本中A、B组的百分比之和可得.
    【详解】
    解:(1)抽取学生的总人数为78÷26%=300人,扇形C的圆心角是360°×=144°,
    故答案为300、144;
    (2)A组人数为300×7%=21人,B组人数为300×17%=51人,
    则E组人数为300﹣(21+51+120+78)=30人,
    补全频数分布直方图如下:

    (3)该校创新意识不强的学生约有2200×(7%+17%)=528人.
    【点睛】
    考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.
    20、(Ⅰ)①y=x2+3x②当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤(Ⅱ)ac≤1
    【解析】
    (I)①由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,②根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x<0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,当点P在第四象限时,x>0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0<x<c时y>0,可得出抛物线的对称轴x=≥c,进而可得出b≤-2ac,结合b=-ac-1即可得出ac≤1.
    【详解】
    (I)①设抛物线的解析式为y=a(x+2)2﹣3,
    ∵抛物线经过点B(﹣3,0),
    ∴0=a(﹣3+2)2﹣3,
    解得:a=1,
    ∴该抛物线的解析式为y=(x+2)2﹣3=x2+3x.
    ②设直线AB的解析式为y=kx+m(k≠0),
    将A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,
    得:,解得:,
    ∴直线AB的解析式为y=﹣2x﹣2.
    ∵直线l与AB平行,且过原点,
    ∴直线l的解析式为y=﹣2x.
    当点P在第二象限时,x<0,如图所示.
    S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,
    ∴S=S△POB+S△AOB=﹣3x+2(x<0).
    ∵3+6≤S≤6+2,
    ∴,即,
    解得:≤x≤,
    ∴x的取值范围是≤x≤.
    当点P′在第四象限时,x>0,
    过点A作AE⊥x轴,垂足为点E,过点P′作P′F⊥x轴,垂足为点F,则
    S四边形AEOP′=S梯形AEFP′﹣S△OFP′=•(x+2)﹣•x•(2x)=3x+3.
    ∵S△ABE=×2×3=3,
    ∴S=S四边形AEOP′+S△ABE=3x+2(x>0).
    ∵3+6≤S≤6+2,
    ∴,即,
    解得:≤x≤,
    ∴x的取值范围为≤x≤.
    综上所述:当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤.
    (II)ac≤1,理由如下:
    ∵当x=c时,y=0,
    ∴ac2+bc+c=0,
    ∵c>1,
    ∴ac+b+1=0,b=﹣ac﹣1.
    由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0).
    把x=0代入y=ax2+bx+c,得y=c,
    ∴抛物线与y轴的交点为(0,c).
    ∵a>0,
    ∴抛物线开口向上.
    ∵当0<x<c时,y>0,
    ∴抛物线的对称轴x=﹣≥c,
    ∴b≤﹣2ac.
    ∵b=﹣ac﹣1,
    ∴﹣ac﹣1≤﹣2ac,
    ∴ac≤1.

    【点睛】
    本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)①巧设顶点式,代入点B的坐标求出a值,②分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b≤-2ac.
    21、工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
    【解析】
    解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).
    在Rt△DEC中,∠DGE=600,DE=176.6米,∴(米).
    ∴(米).
    ∴工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
    在Rt△BAE和Rt△DEC中,应用正切函数分别求出AE和CE的长即可求得AC的长.
    22、x=3时,原式=
    【解析】
    原式括号中两项通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,求出不等式组的解集,找出解集中的整数计算得出到x的值,代入计算即可求出值.
    【详解】
    解:原式=÷

    =,
    解不等式组得,2<x<,
    ∵x取整数,
    ∴x=3,
    当x=3时,原式=.
    【点睛】
    本题主要考查分式额化简求值及一元一次不等式组的整数解.
    23、(1)证明详见解析;(2)证明详见解析;(3)1.
    【解析】
    (1)利用平行线的性质及中点的定义,可利用AAS证得结论;
    (2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
    (3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
    【详解】
    (1)证明:∵AF∥BC,
    ∴∠AFE=∠DBE,
    ∵E是AD的中点,
    ∴AE=DE,
    在△AFE和△DBE中,

    ∴△AFE≌△DBE(AAS);
    (2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
    ∵AD为BC边上的中线
    ∴DB=DC,
    ∴AF=CD.
    ∵AF∥BC,
    ∴四边形ADCF是平行四边形,
    ∵∠BAC=90°,D是BC的中点,E是AD的中点,
    ∴AD=DC=BC,
    ∴四边形ADCF是菱形;
    (3)连接DF,

    ∵AF∥BD,AF=BD,
    ∴四边形ABDF是平行四边形,
    ∴DF=AB=5,
    ∵四边形ADCF是菱形,
    ∴S菱形ADCF=AC▪DF=×4×5=1.
    【点睛】
    本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
    24、(1)见解析;(2)x1=1,x2=2
    【解析】
    (1)根据根的判别式列出关于m的不等式,求解可得;
    (2)取m=-2,代入原方程,然后解方程即可.
    【详解】
    解:(1)根据题意,△=(m-1)2-4[-(2m+2)]=m2+6m+12=(m+2)2+4,
    ∵(m+2)2+4>1,
    ∴方程总有两个不相等的实数根;
    (2)当m=-2时,由原方程得:x2-4x+2=1.
    整理,得(x-1)(x-2)=1,
    解得x1=1,x2=2.
    【点睛】
    本题主要考查根的判别式与韦达定理,一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:①当△>1时,方程有两个不相等的两个实数根;②当△=1时,方程有两个相等的两个实数根;③当△<1时,方程无实数根.
    25、1人
    【解析】
    解:设九年级学生有x人,根据题意,列方程得:
    ,整理得0.8(x+88)=x,解之得x=1.
    经检验x=1是原方程的解.
    答:这个学校九年级学生有1人.
    设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:,根据题意可得方程,解方程即可.
    26、48;105°;
    【解析】
    试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案.
    试题解析:(1)12÷25%=48(人) 14÷48×360°=105° 48-(4+12+14)=18(人),补全图形如下:

    (2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:


    A1

    A1

    A2

    A2

    A1









    A1









    A2









    A2









    ∴由上表可得:
    考点:统计图、概率的计算.
    27、(1)2400元;(2)8台.
    【解析】
    试题分析:(1)设商场第一次购入的空调每台进价是x元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;
    (2)设最多将台空调打折出售,根据题目条件“在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售”列出不等式并解答即可.
    试题解析:(1)设第一次购入的空调每台进价是x元,依题意,得
    解得
    经检验,是原方程的解.
    答:第一次购入的空调每台进价是2 400元.
    (2)由(1)知第一次购入空调的台数为24 000÷2 400=10(台),第二次购入空调的台数为10×2=20(台).
    设第二次将y台空调打折出售,由题意,得
    解得
    答:最多可将8台空调打折出售.

    相关试卷

    2022年福建省永定区第二初级中学中考考前最后一卷数学试卷含解析: 这是一份2022年福建省永定区第二初级中学中考考前最后一卷数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中必然发生的事件是,下列函数是二次函数的是等内容,欢迎下载使用。

    2022年福建省三明市三县重点达标名校中考考前最后一卷数学试卷含解析: 这是一份2022年福建省三明市三县重点达标名校中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。

    2022届广西兴业县重点达标名校中考考前最后一卷数学试卷含解析: 这是一份2022届广西兴业县重点达标名校中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了如图所示的几何体的主视图是,下列计算正确的是,我省2013年的快递业务量为1,下列算式中,结果等于a5的是,估算的值是在等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map