2022届内蒙古乌拉特前旗第四中学中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.抛物线y=mx2﹣8x﹣8和x轴有交点,则m的取值范围是( )
A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠0
2.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是( )
A.①②③ B.②③④ C.①③④ D.①②④
3.若等式x2+ax+19=(x﹣5)2﹣b成立,则 a+b的值为( )
A.16 B.﹣16 C.4 D.﹣4
4.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
A. B. C. D.
5.下列实数中,最小的数是( )
A. B. C.0 D.
6.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形,转动这个四边形,使它形状改变,当,时,等于( )
A. B. C. D.
7.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是( )
A.(1,1) B.(,) C.(1,3) D.(1,)
8.如图是测量一物体体积的过程:
步骤一:将180 mL的水装进一个容量为300 mL的杯子中;
步骤二:将三个相同的玻璃球放入水中,结果水没有满;
步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.
根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)( ).
A.10 cm3以上,20 cm3以下 B.20 cm3以上,30 cm3以下
C.30 cm3以上,40 cm3以下 D.40 cm3以上,50 cm3以下
9.全球芯片制造已经进入10纳米到7纳米器件的量产时代. 中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米. 数据0.000000007用科学计数法表示为( )
A. B. C. D.
10.用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是 ( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.计算:(﹣)﹣2﹣2cos60°=_____.
12.如果抛物线y=ax2+5的顶点是它的最低点,那么a的取值范围是_____.
13.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是_________.
14.分解因式:x2﹣1=____.
15.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.
16.如图,正方形内的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为 .
17.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=________.
三、解答题(共7小题,满分69分)
18.(10分)化简求值:,其中x是不等式组的整数解.
19.(5分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)
20.(8分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元.
(1)求一台A型无人机和一台B型无人机的售价各是多少元?
(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.
①求y与x的关系式;
②购进A型、B型无人机各多少台,才能使总费用最少?
21.(10分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.
(1)求点D沿三条圆弧运动到点G所经过的路线长;
(2)判断线段GB与DF的长度关系,并说明理由.
22.(10分)在△ABC中,∠A,∠B都是锐角,且sinA=,tanB=,AB=10,求△ABC的面积.
23.(12分)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=1.
(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
(2)求△ABC的面积(用含a的代数式表示);
(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.
24.(14分)计算:=_____.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.
【详解】
解:∵抛物线和轴有交点,
,
解得:且.
故选.
【点睛】
本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键.
2、C
【解析】
解:∵A、B是反比函数上的点,∴S△OBD=S△OAC=,故①正确;
当P的横纵坐标相等时PA=PB,故②错误;
∵P是的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正确;
连接OP,=4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正确;
综上所述,正确的结论有①③④.故选C.
点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.
3、D
【解析】
分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值.
详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,
可得a=-10,b=6,
则a+b=-10+6=-4,
故选D.
点睛:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
4、D
【解析】
根据“左加右减、上加下减”的原则,
将抛物线向左平移1个单位所得直线解析式为:;
再向下平移3个单位为:.故选D.
5、B
【解析】
根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.
【详解】
∵<-2<0<,
∴最小的数是-π,
故选B.
【点睛】
此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.
6、B
【解析】
首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,,易得△ABC是等边三角形,即可得到答案.
【详解】
连接AC,
∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,
∴AB=BC,
∵,
∴△ABC是等边三角形,
∴AC=AB=1.
故选:B.
【点睛】
本题考点:菱形的性质.
7、B
【解析】
根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.
【详解】
A选项,(1,1)到坐标原点的距离为<2,因此点在圆内,
B选项(,) 到坐标原点的距离为=2,因此点在圆上,
C选项 (1,3) 到坐标原点的距离为>2,因此点在圆外
D选项(1,) 到坐标原点的距离为<2,因此点在圆内,
故选B.
【点睛】
本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.
8、C
【解析】
分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.
详解:设玻璃球的体积为x,则有
解得30<x<1.
故一颗玻璃球的体积在30cm3以上,1cm3以下.
故选C.
点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x的取值范围.
9、A
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
数据0.000000007用科学记数法表示为7×10-1.
故选A.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
10、A
【解析】
根据菱形的判定方法一一判定即可
【详解】
作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意
B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意
C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意
D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD是菱形,D不符合题意
故选A
【点睛】
本题考查平行四边形的判定,能理解每个图的作法是本题解题关键
二、填空题(共7小题,每小题3分,满分21分)
11、3
【解析】
按顺序先进行负指数幂的运算、代入特殊角的三角函数值,然后再进行减法运算即可.
【详解】
(﹣)﹣2﹣2cos60°
=4-2×
=3,
故答案为3.
【点睛】
本题考查了实数的运算,涉及了负指数幂、特殊角的三角函数值,熟练掌握相关的运算法则是解题的关键.
12、a>1
【解析】
根据二次函数的图像,由抛物线y=ax2+5的顶点是它的最低点,知a>1,
故答案为a>1.
13、3<d<7
【解析】
若两圆的半径分别为R和r,且R≥r,圆心距为d:相交,则R-r<d<R+r,从而得到圆心距O1O2的取值范围.
【详解】
∵⊙O1和⊙O2的半径分别为2和5,且两圆的位置关系为相交,
∴圆心距O1O2的取值范围为5-2<d<2+5,即3<d<7.
故答案为:3<d<7.
【点睛】
本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.
14、(x+1)(x﹣1).
【解析】
试题解析:x2﹣1=(x+1)(x﹣1).
考点:因式分解﹣运用公式法.
15、
【解析】
∵投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,
∴其概率是=.
【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
16、.
【解析】
试题分析:此题是求阴影部分的面积占正方形面积的几分之几,即为所求概率.阴影部分的面积为:3×1÷2×4=6,因为正方形对角线形成4个等腰直角三角形,所以边长是=,∴这个点取在阴影部分的概率为:6÷=6÷18=.
考点:求随机事件的概率.
17、1:3:5
【解析】
∵DE∥FG∥BC,
∴△ADE∽△AFG∽△ABC,
∵AD=DF=FB,
∴AD:AF:AB=1:2:3,
∴ =1:4:9,
∴SⅠ:SⅡ:SⅢ=1:3:5.
故答案为1:3:5.
点睛: 本题考查了平行线的性质及相似三角形的性质.相似三角形的面积比等于相似比的平方.
三、解答题(共7小题,满分69分)
18、当x=﹣3时,原式=﹣,当x=﹣2时,原式=﹣1.
【解析】
先化简分式,再解不等式组求得x的取值范围,在此范围内找到符合分式有意义的x的整数值,代入计算可得.
【详解】
原式=÷
=•
=,
解不等式组,
解不等式①,得:x>﹣4,
解不等式②,得:x≤﹣1,
∴不等式组的解集为﹣4<x≤﹣1,
∴不等式的整数解是﹣3,﹣2,﹣1.
又∵x+1≠0,x﹣1≠0∴x≠±1,
∴x=﹣3或x=﹣2,
当x=﹣3时,原式=﹣,
当x=﹣2时,原式=﹣1.
【点睛】
本题考查了分式的化简求值及一元一次不等式组的整数解,求分式的值时,一定要选择使每个分式都有意义的未知数的值.
19、这棵树CD的高度为8.7米
【解析】
试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.
试题解析:∵∠CBD=∠A+∠ACB,
∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,
∴∠A=∠ACB,
∴BC=AB=10(米).
在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).
答:这棵树CD的高度为8.7米.
考点:解直角三角形的应用
20、(1)一台A型无人机售价800元,一台B型无人机的售价1000元;
(2)①y=﹣200x+50000;②购进A型、B型无人机各16台、34台时,才能使总费用最少.
【解析】
(1)根据3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;
(2)①根据题意可以得到y与x的函数关系式;
②根据①中的函数关系式和B型无人机的数量不少于A型无人机的数量的2倍,可以求得购进A型、B型无人机各多少台,才能使总费用最少.
【详解】
解:(1)设一台型无人机售价元,一台型无人机的售价元,
,
解得,,
答:一台型无人机售价元,一台型无人机的售价元;
(2)①由题意可得,
即y与x的函数关系式为;
②∵B型无人机的数量不少于A型无人机的数量的2倍,
,
解得,,
,
∴当时,y取得最小值,此时,
答:购进型、型无人机各台、台时,才能使总费用最少.
【点睛】
本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答.
21、(1)6π;(2)GB=DF,理由详见解析.
【解析】
(1)根据弧长公式l= 计算即可;
(2)通过证明给出的条件证明△FDC≌△GBC即可得到线段GB与DF的长度关系.
【详解】
解:(1)∵AD=2,∠DAE=90°,
∴弧DE的长 l1= =π,
同理弧EF的长 l2= =2π,弧FG的长 l3= =3π,
所以,点D运动到点G所经过的路线长l=l1+l2+l3=6π.
(2)GB=DF.
理由如下:延长GB交DF于H.
∵CD=CB,∠DCF=∠BCG,CF=CG,
∴△FDC≌△GBC.
∴GB=DF.
【点睛】
本题考查弧长公式以及全等三角形的判定和性质,题目比较简单,解题关键掌握是弧长公式.
22、
【解析】
根据已知得该三角形为直角三角形,利用三角函数公式求出各边的值,再利用三角形的面积公式求解.
【详解】
如图:
由已知可得:∠A=30°,∠B=60°,
∴△ABC为直角三角形,且∠C=90°,AB=10,
∴BC=AB·sin30°=10=5,
AC=AB·cos30°=10=,
∴S△ABC=.
【点睛】
本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.
23、(1)(m,2m﹣2);(2)S△ABC =﹣;(3)m的值为或10+2.
【解析】
分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;
(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=1,可得出点B的坐标为(m+2,1a+2m−2),设BD=t,则点C的坐标为(m+2+t,1a+2m−2−t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC的值;
(3)由(2)的结论结合S△ABC=2可求出a值,分三种情况考虑:①当m>2m−2,即m<2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m−2≤m≤2m−2,即2≤m≤2时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m−2,即m>2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.
详解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,
∴抛物线的顶点坐标为(m,2m﹣2),
故答案为(m,2m﹣2);
(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,
∵AB∥x轴,且AB=1,
∴点B的坐标为(m+2,1a+2m﹣2),
∵∠ABC=132°,
∴设BD=t,则CD=t,
∴点C的坐标为(m+2+t,1a+2m﹣2﹣t),
∵点C在抛物线y=a(x﹣m)2+2m﹣2上,
∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,
整理,得:at2+(1a+1)t=0,
解得:t1=0(舍去),t2=﹣,
∴S△ABC=AB•CD=﹣;
(3)∵△ABC的面积为2,
∴﹣=2,
解得:a=﹣,
∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣2.
分三种情况考虑:
①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣2=2,
整理,得:m2﹣11m+39=0,
解得:m1=7﹣(舍去),m2=7+(舍去);
②当2m﹣2≤m≤2m﹣2,即2≤m≤2时,有2m﹣2=2,解得:m=;
③当m<2m﹣2,即m>2时,有﹣(2m﹣2﹣m)2+2m﹣2=2,
整理,得:m2﹣20m+60=0,
解得:m3=10﹣2(舍去),m1=10+2.
综上所述:m的值为或10+2.
点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m<2、2≤m≤2及m>2三种情况考虑.
24、1
【解析】
首先计算负整数指数幂和开平方,再计算减法即可.
【详解】
解:原式=9﹣3=1.
【点睛】
此题主要考查了实数运算,关键是掌握负整数指数幂:为正整数).
2022年内蒙古巴彦淖尔市乌拉特前旗中考押题数学预测卷含解析: 这是一份2022年内蒙古巴彦淖尔市乌拉特前旗中考押题数学预测卷含解析,共23页。试卷主要包含了答题时请按要求用笔,实数的相反数是等内容,欢迎下载使用。
2022届内蒙古通辽市中考押题数学预测卷含解析: 这是一份2022届内蒙古通辽市中考押题数学预测卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是等内容,欢迎下载使用。
2022届内蒙古根河市阿龙山中学中考押题数学预测卷含解析: 这是一份2022届内蒙古根河市阿龙山中学中考押题数学预测卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,下列实数中,最小的数是,计算3–等内容,欢迎下载使用。