年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年江阴山观二中中考四模数学试题含解析

    2021-2022学年江阴山观二中中考四模数学试题含解析第1页
    2021-2022学年江阴山观二中中考四模数学试题含解析第2页
    2021-2022学年江阴山观二中中考四模数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江阴山观二中中考四模数学试题含解析

    展开

    这是一份2021-2022学年江阴山观二中中考四模数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.关于反比例函数y=,下列说法中错误的是(  )
    A.它的图象是双曲线
    B.它的图象在第一、三象限
    C.y的值随x的值增大而减小
    D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上
    2.(2011•黑河)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是(  )

    A、2个 B、3个
    C、4个 D、5个
    3.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )
    A. B.
    C. D.
    4.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是(  )
    A.﹣10 B.10 C.﹣6 D.2
    5.如图,在▱ABCD中,AB=2,BC=1.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是(  )

    A. B.1 C. D.
    6.下列汽车标志中,不是轴对称图形的是( )
    A. B. C. D.
    7.若※是新规定的某种运算符号,设a※b=b 2 -a,则-2※x=6中x的值()
    A.4 B.8 C.2 D.-2
    8.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是(  )

    A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570
    C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=570
    9.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是(  )
    A. B.
    C. D.
    10.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.

    说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.
    根据上述信息,下列结论中错误的是(  )
    A.2017年第二季度环比有所提高
    B.2017年第三季度环比有所提高
    C.2018年第一季度同比有所提高
    D.2018年第四季度同比有所提高
    11.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(    )
    A.9分 B.8分 C.7分 D.6分
    12.如图,圆O是等边三角形内切圆,则∠BOC的度数是(  )

    A.60° B.100° C.110° D.120°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.的算术平方根是_____.
    14.如图,在梯形中,,,点、分别是边、的中点.设,,那么向量用向量表示是________.

    15.如图,直线y=kx与双曲线y=(x>0)交于点A(1,a),则k=_____.

    16.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是______.
    17.如图,在△ABC中,AB=2,BC=3.5,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为_____.

    18.如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线(>0)交AB于点E,AE︰EB=1︰3.则矩形OABC的面积是 __________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为   ;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.
    20.(6分)计算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣|.
    21.(6分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.
    (1)求证:直线CD是⊙O的切线;
    (2)若DE=2BC,AD=5,求OC的值.

    22.(8分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图. 根据上述信息,解答下列问题:

    (1)本次抽取的学生人数是 ______ ;扇形统计图中的圆心角α等于 ______ ;补全统计直方图;
    (2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.
    23.(8分)如图,有长为14m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm1.求S与x的函数关系式及x值的取值范围;要围成面积为45m1的花圃,AB的长是多少米?当AB的长是多少米时,围成的花圃的面积最大?

    24.(10分)探究:
    在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手   次:;若参加聚会的人数为5,则共握手   次;若参加聚会的人数为n(n为正整数),则共握手   次;若参加聚会的人共握手28次,请求出参加聚会的人数.
    拓展:
    嘉嘉给琪琪出题:
    “若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”
    琪琪的思考:“在这个问题上,线段总数不可能为30”
    琪琪的思考对吗?为什么?
    25.(10分)如图,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中≌,可知,求得______.如图,在矩形的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.
    求证:.
    若,求的度数.

    26.(12分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
    27.(12分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
    本数(本)
    频数(人数)
    频率
    5

    0.2
    6
    18
    0.36
    7
    14

    8
    8
    0.16
    合计

    1
    (1)统计表中的________,________,________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.
    【详解】
    A.反比例函数的图像是双曲线,正确;
    B.k=2>0,图象位于一、三象限,正确;
    C.在每一象限内,y的值随x的增大而减小,错误;
    D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.
    故选C.
    【点睛】
    本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.
    2、B
    【解析】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
    解答:解:①根据图示知,二次函数与x轴有两个交点,所以△=b2-4ac>0;故①正确;
    ②根据图示知,该函数图象的开口向上,
    ∴a>0;
    故②正确;
    ③又对称轴x=-=1,
    ∴<0,
    ∴b<0;
    故本选项错误;
    ④该函数图象交于y轴的负半轴,
    ∴c<0;
    故本选项错误;
    ⑤根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);
    当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.
    所以①②⑤三项正确.
    故选B.
    3、C
    【解析】
    试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,.故选C.
    考点:由实际问题抽象出分式方程.
    4、D
    【解析】
    根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.
    【详解】
    解:根据题意得:
    x1+x2=﹣m=2+4,
    解得:m=﹣6,
    x1•x2=n=2×4,
    解得:n=8,
    m+n=﹣6+8=2,
    故选D.
    【点睛】
    本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.
    5、B
    【解析】
    分析:只要证明BE=BC即可解决问题;
    详解:∵由题意可知CF是∠BCD的平分线,
    ∴∠BCE=∠DCE.
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠DCE=∠E,∠BCE=∠AEC,
    ∴BE=BC=1,
    ∵AB=2,
    ∴AE=BE-AB=1,
    故选B.
    点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.
    6、C
    【解析】
    根据轴对称图形的概念求解.
    【详解】
    A、是轴对称图形,故错误;
    B、是轴对称图形,故错误;
    C、不是轴对称图形,故正确;
    D、是轴对称图形,故错误.
    故选C.
    【点睛】
    本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
    7、C
    【解析】
    解:由题意得:,∴,∴x=±1.故选C.
    8、A
    【解析】
    六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,
    故选A.
    9、A
    【解析】
    以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.
    【详解】
    如图,点E即为所求作的点.故选:A.

    【点睛】
    本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.
    10、C
    【解析】
    根据环比和同比的比较方法,验证每一个选项即可.
    【详解】
    2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;
    2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;
    2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;
    2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正确;
    故选C.
    【点睛】
    本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.
    11、C
    【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.
    详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为 :7分,
    故答案为:C.
    点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    12、D
    【解析】
    由三角形内切定义可知OB、OC是∠ABC、∠ACB的角平分线,所以可得到关系式∠OBC+∠OCB=(∠ABC+∠ACB),把对应数值代入即可求得∠BOC的值.
    【详解】
    解:∵△ABC是等边三角形,
    ∴∠A=∠ABC=∠ACB=60°,
    ∵圆O是等边三角形内切圆,
    ∴OB、OC是∠ABC、∠ACB的角平分线,
    ∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,
    ∴∠BOC=180°﹣60=120°,
    故选D.
    【点睛】
    此题主要考查了三角形的内切圆与内心以及切线的性质.关键是要知道关系式∠OBC+∠OCB=(∠ABC+∠ACB).

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    ∵=8,()2=8,
    ∴的算术平方根是.
    故答案为:.
    14、
    【解析】
    分析:根据梯形的中位线等于上底与下底和的一半表示出EF,然后根据向量的三角形法则解答即可.
    详解:∵点E、F分别是边AB、CD的中点,∴EF是梯形ABCD的中位线,FC=DC,∴EF=(AD+BC).∵BC=3AD,∴EF=(AD+3AD)=2AD,由三角形法则得,=+=2+===2+.
    故答案为:2+.
    点睛:本题考查了平面向量,平面向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键,本题还考查了梯形的中位线等于上底与下底和的一半.
    15、1
    【解析】
    解:∵直线y=kx与双曲线y=(x>0)交于点A(1,a),∴a=1,k=1.故答案为1.
    16、k<5且k≠1.
    【解析】
    试题解析:∵关于x的一元二次方程有两个不相等的实数根,

    解得:且
    故答案为且
    17、1.1.
    【解析】
    分析:由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.
    详解:由旋转的性质可得:AD=AB,
    ∵∠B=60°,
    ∴△ABD是等边三角形,
    ∴BD=AB,
    ∵AB=2,BC=3.1,
    ∴CD=BC-BD=3.1-2=1.1.
    故答案为:1.1.
    点睛:此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.
    18、1
    【解析】
    根据反比例函数图象上点的坐标特征设E点坐标为(t,),则利用AE:EB=1:3,B点坐标可表示为(4t,),然后根据矩形面积公式计算.
    【详解】
    设E点坐标为(t,),
    ∵AE:EB=1:3,
    ∴B点坐标为(4t,),
    ∴矩形OABC的面积=4t•=1.
    故答案是:1.
    【点睛】
    考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1);(2),见解析.
    【解析】
    (1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;
    (2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.
    【详解】
    解:(1)∵四只鞋子中右脚鞋有2只,
    ∴随手拿出一只,恰好是右脚鞋的概率为=,
    故答案为:;
    (2)画树状图如下:

    共有12种等可能的结果,其中两只恰好为一双的情况有4种,
    ∴拿出两只,恰好为一双的概率为=.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    20、2+1
    【解析】
    根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简各项后,再根据实数的运算法则计算即可求解.
    【详解】
    原式=-1+3+
    = -1+3+
    =2+1.
    【点睛】
    本题主要考查了实数运算,根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质正确化简各数是解题关键.
    21、(1)证明见解析;(2).
    【解析】
    试题分析:(1)首选连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;
    (2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.
    试题解析:(1)连结DO.

    ∵AD∥OC,
    ∴∠DAO=∠COB,∠ADO=∠COD.
    又∵OA=OD,
    ∴∠DAO=∠ADO,
    ∴∠COD=∠COB. 3分
    又∵CO=CO, OD=OB
    ∴△COD≌△COB(SAS) 4分
    ∴∠CDO=∠CBO=90°.
    又∵点D在⊙O上,
    ∴CD是⊙O的切线.
    (2)∵△COD≌△COB.
    ∴CD=CB.
    ∵DE=2BC,
    ∴ED=2CD.
    ∵AD∥OC,
    ∴△EDA∽△ECO.
    ∴,
    ∴.
    考点:1.切线的判定2.全等三角形的判定与性质3.相似三角形的判定与性质.
    22、(1)30;;(2).
    【解析】
    试题分析:(1)根据题意列式求值,根据相应数据画图即可;
    (2)根据题意列表,然后根据表中数据求出概率即可.
    解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,
    答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;
    故答案为30,144°;
    补全统计图如图所示:
    (2)根据题意列表如下:
    设竖列为小红抽取的跑道,横排为小花抽取的跑道,

    记小红和小花抽在相邻两道这个事件为A,
    ∴.

    考点:列表法与树状图法;扇形统计图;利用频率估计概率.
    23、(1)S=﹣3x1+14x,≤x< 8;(1) 5m;(3)46.67m1
    【解析】
    (1)设花圃宽AB为xm,则长为(14-3x),利用长方形的面积公式,可求出S与x关系式,根据墙的最大长度求出x的取值范围;
    (1)根据(1)所求的关系式把S=2代入即可求出x,即AB;
    (3)根据二次函数的性质及x的取值范围求出即可.
    【详解】
    解:(1)根据题意,得S=x(14﹣3x),
    即所求的函数解析式为:S=﹣3x1+14x,
    又∵0<14﹣3x≤10,
    ∴;
    (1)根据题意,设花圃宽AB为xm,则长为(14-3x),
    ∴﹣3x1+14x=2.
    整理,得x1﹣8x+15=0,
    解得x=3或5,
    当x=3时,长=14﹣9=15>10不成立,
    当x=5时,长=14﹣15=9<10成立,
    ∴AB长为5m;
    (3)S=14x﹣3x1=﹣3(x﹣4)1+48
    ∵墙的最大可用长度为10m,0≤14﹣3x≤10,
    ∴,
    ∵对称轴x=4,开口向下,
    ∴当x=m,有最大面积的花圃.
    【点睛】
    二次函数在实际生活中的应用是本题的考点,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键.
    24、探究:(1)3,1;(2);(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析.
    【解析】
    探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;
    (2)由(1)的结论结合参会人数为n,即可得出结论;
    (3)由(2)的结论结合共握手28次,即可得出关于n的一元二次方程,解之取其正值即可得出结论;
    拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.
    【详解】
    探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.
    故答案为3;1.
    (2)∵参加聚会的人数为n(n为正整数),
    ∴每人需跟(n-1)人握手,
    ∴握手总数为.
    故答案为.
    (3)依题意,得:=28,
    整理,得:n2-n-56=0,
    解得:n1=8,n2=-7(舍去).
    答:参加聚会的人数为8人.
    拓展:琪琪的思考对,理由如下:
    如果线段数为2,则由题意,得:=2,
    整理,得:m2-m-60=0,
    解得m1=,m2=(舍去).
    ∵m为正整数,
    ∴没有符合题意的解,
    ∴线段总数不可能为2.
    【点睛】
    本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.
    25、阅读发现:90°;(1)证明见解析;(2)100°
    【解析】
    阅读发现:只要证明,即可证明.
    拓展应用:欲证明,只要证明≌即可.
    根据即可计算.
    【详解】
    解:如图中,四边形ABCD是正方形,
    ,,
    ≌,






    故答案为
    为等边三角形,
    ,.
    为等边三角形,
    ,.
    四边形ABCD为矩形,
    ,.

    ,,

    在和中,

    ≌.

    ≌,


    【点睛】
    本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.
    26、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.
    【解析】
    (1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
    【详解】
    (1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,
    根据题意得:,
    解得:x=40,
    经检验,x=40是原分式方程的解,且符合题意,
    ∴x=×40=60,
    答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;
    (2)设安排甲队工作m天,则安排乙队工作天,
    根据题意得:7m+5×≤145,
    解得:m≥10,
    答:至少安排甲队工作10天.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.
    27、(1)10,0.28,50(2)图形见解析(3)6.4(4)528
    【解析】
    分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;
    (2)根据a的值画出条形图即可;
    (3)根据平均数的定义计算即可;
    (4)用样本估计总体的思想解决问题即可;
    详解:(1)由题意c==50,
    a=50×0.2=10,b==0.28,c=50;
    故答案为10,0.28,50;
    (2)将频数分布表直方图补充完整,如图所示:

    (3)所有被调查学生课外阅读的平均本数为:
    (5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).
    (4)该校七年级学生课外阅读7本及以上的人数为:
    (0.28+0.16)×1200=528(人).
    点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.

    相关试卷

    江阴山观二中2023-2024学年九上数学期末学业质量监测试题含答案:

    这是一份江阴山观二中2023-2024学年九上数学期末学业质量监测试题含答案,共8页。

    江阴山观二中2023-2024学年数学八年级第一学期期末经典模拟试题含答案:

    这是一份江阴山观二中2023-2024学年数学八年级第一学期期末经典模拟试题含答案,共7页。试卷主要包含了点P象限,在实数中,无理数的个数为等内容,欢迎下载使用。

    2022-2023学年江阴山观二中数学七下期末质量检测模拟试题含答案:

    这是一份2022-2023学年江阴山观二中数学七下期末质量检测模拟试题含答案,共8页。试卷主要包含了分式方程有增根,则的值为,下列命题是假命题的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map