年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    内蒙古赤峰二中学2021-2022学年中考数学四模试卷含解析

    内蒙古赤峰二中学2021-2022学年中考数学四模试卷含解析第1页
    内蒙古赤峰二中学2021-2022学年中考数学四模试卷含解析第2页
    内蒙古赤峰二中学2021-2022学年中考数学四模试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    内蒙古赤峰二中学2021-2022学年中考数学四模试卷含解析

    展开

    这是一份内蒙古赤峰二中学2021-2022学年中考数学四模试卷含解析,共21页。试卷主要包含了下列各式计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=,其中正确结论的个数是( )

    A.0 B.1 C.2 D.3
    2.一个多边形内角和是外角和的2倍,它是( )
    A.五边形 B.六边形 C.七边形 D.八边形
    3.如图,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为(   )

    A.7 B.8 C.9 D.10
    4.如图,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分别过点B,C作BE⊥AG 于点E,CF⊥AG于点F,则AE-GF的值为( )

    A.1 B. C. D.
    5.小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25% ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克.若设早上葡萄的价格是 x 元/千克,则可列方程( )
    A. B.
    C. D.
    6.在,,,这四个数中,比小的数有( )个.
    A. B. C. D.
    7.下列各式计算正确的是( )
    A. B. C. D.
    8.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF,其中正确的是(  )

    A.①③ B.②④ C.①③④ D.②③④
    9.在下列各平面图形中,是圆锥的表面展开图的是( )
    A. B. C. D.
    10.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是(  )
    A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1
    C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣1
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知⊙O的半径为5,由直径AB的端点B作⊙O的切线,从圆周上一点P引该切线的垂线PM,M为垂足,连接PA,设PA=x,则AP+2PM的函数表达式为______,此函数的最大值是____,最小值是______.
    12.如图,在平面直角坐标系中,函数y=(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为___________.

    13.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.
    14.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.

    15.若-2amb4与5a2bn+7是同类项,则m+n= .
    16.如图,和是分别沿着AB,AC边翻折形成的,若,则的度数是______度

    三、解答题(共8题,共72分)
    17.(8分)我们来定义一种新运算:对于任意实数 x、y,“※”为 a※b=(a+1)(b+1)﹣1.
    (1)计算(﹣3)※9
    (2)嘉琪研究运算“※”之后认为它满足交换律,你认为她的判断 ( 正确、错误)
    (3)请你帮助嘉琪完成她对运算“※”是否满足结合律的证明.

    18.(8分)如图,P是半圆弧上一动点,连接PA、PB,过圆心O作交PA于点C,连接已知,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.
    小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.
    下面是小东的探究过程,请补充完整:
    通过取点、画图、测量,得到了x与y的几组值,如下表:

    0

    1

    2

    3

    3





    6
    说明:补全表格时相关数据保留一位小数
    建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;
    结合画出的函数图象,解决问题:直接写出周长C的取值范围是______.

    19.(8分)如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).求k、m的值;已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.
    ①当n=1时,判断线段PM与PN的数量关系,并说明理由;
    ②若PN≥PM,结合函数的图象,直接写出n的取值范围.

    20.(8分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.

    (1)求证:PC是⊙O的切线;
    (2)若PC=3,PF=1,求AB的长.
    21.(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.
    求证:(1)△ABE≌△CDF;
    (2)四边形BFDE是平行四边形.
    22.(10分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.
    (1)求证:BC是∠ABE的平分线;
    (2)若DC=8,⊙O的半径OA=6,求CE的长.
    23.(12分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.
    若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.
    24.已知:如图,∠ABC,射线BC上一点D,
    求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    由四边形ABCD是正方形,得到AD=BC, 根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据勾股定理求出直接用余弦可求出.
    【详解】
    详解:∵四边形ABCD是正方形,
    ∴AD=BC,
    ∵BP=CQ,
    ∴AP=BQ,
    在△DAP与△ABQ中,
    ∴△DAP≌△ABQ,
    ∴∠P=∠Q,



    ∴AQ⊥DP;
    故①正确;
    ②无法证明,故错误.
    ∵BP=1,AB=3,



    ∴ 故③正确,
    故选C.
    【点睛】
    考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.
    2、B
    【解析】
    多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.
    【详解】
    设这个多边形是n边形,根据题意得:
    (n﹣2)×180°=2×310°
    解得:n=1.
    故选B.
    【点睛】
    本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
    3、B
    【解析】
    根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.
    【详解】
    在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,
    ∴AC===10,
    ∵DE是△ABC的中位线,
    ∴DF∥BM,DE=BC=3,
    ∴∠EFC=∠FCM,
    ∵∠FCE=∠FCM,
    ∴∠EFC=∠ECF,
    ∴EC=EF=AC=5,
    ∴DF=DE+EF=3+5=2.
    故选B.

    4、D
    【解析】
    设AE=x,则AB=x,由矩形的性质得出∠BAD=∠D=90°,CD=AB,证明△ADG是等腰直角三角形,得出AG=AD=,同理得出CD=AB=x,CG=CD-DG=x -1,CG=GF,得出GF,即可得出结果.
    【详解】
    设AE=x,
    ∵四边形ABCD是矩形,
    ∴∠BAD=∠D=90°,CD=AB,
    ∵AG平分∠BAD,
    ∴∠DAG=45°,
    ∴△ADG是等腰直角三角形,
    ∴DG=AD=1,
    ∴AG=AD=,
    同理:BE=AE=x, CD=AB=x,
    ∴CG=CD-DG=x -1,
    同理: CG=GF,
    ∴FG= ,
    ∴AE-GF=x-(x-)=.
    故选D.
    【点睛】
    本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.
    5、B
    【解析】
    分析:根据数量=,可知第一次买了千克,第二次买了,根据第二次恰好比第一次多买了 0.5 千克列方程即可.
    详解:设早上葡萄的价格是 x 元/千克,由题意得,
    .
    故选B.
    点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系.
    6、B
    【解析】
    比较这些负数的绝对值,绝对值大的反而小.
    【详解】
    在﹣4、﹣、﹣1、﹣这四个数中,比﹣2小的数是是﹣4和﹣.故选B.
    【点睛】
    本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小.
    7、C
    【解析】
    解:A.2a与2不是同类项,不能合并,故本选项错误;
    B.应为,故本选项错误;
    C.,正确;
    D.应为,故本选项错误.
    故选C.
    【点睛】
    本题考查幂的乘方与积的乘方;同底数幂的乘法.
    8、C
    【解析】
    ①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,
    ②设BC=a,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;
    ③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,
    ④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和S△ABE,再通过比较大小就可以得出结论.
    【详解】
    ①四边形ABCD是正方形,
    ∴AB═AD,∠B=∠D=90°.
    在Rt△ABE和Rt△ADF中,

    ∴Rt△ABE≌Rt△ADF(HL),
    ∴BE=DF
    ∵BC=CD,
    ∴BC-BE=CD-DF,即CE=CF,
    ∵AE=AF,
    ∴AC垂直平分EF.(故①正确).
    ②设BC=a,CE=y,
    ∴BE+DF=2(a-y)
    EF=y,
    ∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).
    ③当∠DAF=15°时,
    ∵Rt△ABE≌Rt△ADF,
    ∴∠DAF=∠BAE=15°,
    ∴∠EAF=90°-2×15°=60°,
    又∵AE=AF
    ∴△AEF为等边三角形.(故③正确).
    ④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:
    (x+y)2+y2=(x)2
    ∴x2=2y(x+y)
    ∵S△CEF=x2,S△ABE=y(x+y),
    ∴S△ABE=S△CEF.(故④正确).
    综上所述,正确的有①③④,
    故选C.
    【点睛】
    本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.
    9、C
    【解析】
    结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.
    【详解】
    解:圆锥的展开图是由一个扇形和一个圆形组成的图形.
    故选C.
    【点睛】
    考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.
    10、B
    【解析】
    ∵函数y=-2x2的顶点为(0,0),
    ∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),
    ∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,
    故选B.
    【点睛】
    二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、x2+x+20(0<x<10) 不存在.
    【解析】
    先连接BP,AB是直径,BP⊥BM,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP,那么有△PMB∽△PAB,于是PM:PB=PB:AB,可求从而有(0<x<10),再根据二次函数的性质,可求函数的最大值.
    【详解】
    如图所示,连接PB,
    ∵∠PBM=∠BAP,∠BMP=∠APB=90°,
    ∴△PMB∽△PAB,
    ∴PM:PB=PB:AB,

    ∴(0<x<10),

    ∴AP+2PM有最大值,没有最小值,
    ∴y最大值=
    故答案为(0<x<10),,不存在.

    【点睛】
    考查相似三角形的判定与性质,二次函数的最值等,综合性比较强,需要熟练掌握.
    12、(4,).
    【解析】
    由于函数y=(x>0常数k>0)的图象经过点A(1,1),把(1,1)代入解析式求出k=1,然后得到AC=1.设B点的横坐标是m,则AC边上的高是(m-1),根据三角形的面积公式得到关于m的方程,从而求出,然后把m的值代入y=,即可求得B的纵坐标,最后就求出了点B的坐标.
    【详解】
    ∵函数y=(x>0、常数k>0)的图象经过点A(1,1),
    ∴把(1,1)代入解析式得到1=,
    ∴k=1,
    设B点的横坐标是m,
    则AC边上的高是(m-1),
    ∵AC=1
    ∴根据三角形的面积公式得到×1•(m-1)=3,
    ∴m=4,把m=4代入y=,
    ∴B的纵坐标是,
    ∴点B的坐标是(4,).
    故答案为(4,).
    【点睛】
    解答本题的关键是根据已知坐标系中点的坐标,可以表示图形中线段的长度.根据三角形的面积公式即可解答.
    13、
    【解析】
    根据弧长公式可得:=,
    故答案为.
    14、
    【解析】
    连接BD,易证△DAB是等边三角形,即可求得△ABD的高为,再证明△ABG≌△DBH,即可得四边形GBHD的面积等于△ABD的面积,由图中阴影部分的面积为S扇形EBF﹣S△ABD即可求解.
    【详解】
    如图,连接BD.

    ∵四边形ABCD是菱形,∠A=60°,
    ∴∠ADC=120°,
    ∴∠1=∠2=60°,
    ∴△DAB是等边三角形,
    ∵AB=2,
    ∴△ABD的高为,
    ∵扇形BEF的半径为2,圆心角为60°,
    ∴∠4+∠5=60°,∠3+∠5=60°,
    ∴∠3=∠4,
    设AD、BE相交于点G,设BF、DC相交于点H,
    在△ABG和△DBH中, ,
    ∴△ABG≌△DBH(ASA),
    ∴四边形GBHD的面积等于△ABD的面积,
    ∴图中阴影部分的面积是:S扇形EBF﹣S△ABD=﹣×2×=.
    故答案是:.
    【点睛】
    本题考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形GBHD的面积等于△ABD的面积是解题关键.
    15、-1.
    【解析】
    试题分析:根据同类项是字母相同且相同字母的指数也相同,可得方程组,根据解方程组,可得m、n的值,根据有理数的加法,可得答案.
    试题解析:由-2amb4与5a2bn+7是同类项,得

    解得.
    ∴m+n=-1.
    考点:同类项.
    16、60
    【解析】
    ∵∠BAC=150°∴∠ABC+∠ACB=30°∵∠EBA=∠ABC,∠DCA=∠ACB
    ∴∠EBA+∠ABC+∠DCA+∠ACB=2(∠ABC+∠ACB)=60°,即∠EBC+∠DCB=60°
    ∴θ=60°.

    三、解答题(共8题,共72分)
    17、(1)-21;(2)正确;(3)运算“※”满足结合律
    【解析】
    (1)根据新定义运算法则即可求出答案.
    (2)只需根据整式的运算证明法则a※b=b※a即可判断.
    (3)只需根据整式的运算法则证明(a※b)※c=a※(b※c)即可判断.
    【详解】
    (1)(-3)※9=(-3+1)(9+1)-1=-21
    (2)a※b=(a+1)(b+1)-1
    b※a=(b+1)(a+1)-1,
    ∴a※b=b※a,
    故满足交换律,故她判断正确;
    (3)由已知把原式化简得a※b=(a+1)(b+1)-1=ab+a+b
    ∵(a※b)※c=(ab+a+b)※c
    =(ab+a+b+1)(c+1)-1
    =abc+ac+ab+bc+a+b+c
    ∵a※(b※c)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c
    ∴(a※b)※c=a※(b※c)
    ∴运算“※”满足结合律
    【点睛】
    本题考查新定义运算,解题的关键是正确理解新定义运算的法则,本题属于中等题型.
    18、(1)(2)详见解析;(3).
    【解析】
    (1)动手操作,细心测量即可求解;(2)利用描点、连线画出函数图象即可;(3)根据观察找到函数值的取值范围,即可求得△OBC周长C的取值范围.
    【详解】
    经过测量,时,y值为
    根据题意,画出函数图象如下图:

    根据图象,可以发现,y的取值范围为:,

    故答案为.
    【点睛】
    本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,让学生进一步了解函数的意义.
    19、 (1) k的值为3,m的值为1;(2)0

    相关试卷

    2024年内蒙古赤峰市克什克腾旗中考数学一模试卷(含解析):

    这是一份2024年内蒙古赤峰市克什克腾旗中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年内蒙古赤峰市松山区中考数学二模试卷(含解析):

    这是一份2023年内蒙古赤峰市松山区中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    内蒙古赤峰市2021-2022学年中考数学最后冲刺模拟试卷含解析:

    这是一份内蒙古赤峰市2021-2022学年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如图1是一座立交桥的示意图等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map