2022届江苏省无锡江阴市中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( ).
A. B. C. D.
2.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为( )
A. B. C. D.
3.下列汽车标志中,不是轴对称图形的是( )
A. B. C. D.
4.如图,在Rt△ABC中,∠C=90°, BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是 ( )
A. B. C.6 D.4
5.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )
A. B. C. D.
6.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是( )
A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<2
7.如图,在Rt△ABC中,∠B=90º,AB=6,BC=8,点D在BC上,以AC为对角线的所有□ADCE中,DE的最小值是( )
A.4 B.6 C.8 D.10
8.一元二次方程x2﹣3x+1=0的根的情况( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.没有实数根 D.以上答案都不对
9.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:
t
0
1
2
3
4
5
6
7
…
h
0
8
14
18
20
20
18
14
…
下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是( )
A.1 B.2 C.3 D.4
10.在数轴上标注了四段范围,如图,则表示的点落在( )
A.段① B.段② C.段③ D.段④
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=_____.
12.=__________
13.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为__________.
14.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.
15.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)
16.如图,直线l1∥l2,则∠1+∠2=____.
17.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是_____.
三、解答题(共7小题,满分69分)
18.(10分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:
(1)甲选择座位W的概率是多少;
(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.
19.(5分)佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2﹣2x﹣3的图象与x轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x2﹣2x﹣3=0的解.
根据以上方程与函数的关系,如果我们直到函数y=x3+2x2﹣x﹣2的图象与x轴交点的横坐标,即可知方程x3+2x2﹣x﹣2=0的解.
佳佳为了解函数y=x3+2x2﹣x﹣2的图象,通过描点法画出函数的图象.
x
…
﹣3
﹣
﹣2
﹣
﹣1
﹣
0
1
2
…
y
…
﹣8
﹣
0
m
﹣
﹣2
﹣
0
12
…
(1)直接写出m的值,并画出函数图象;
(2)根据表格和图象可知,方程的解有 个,分别为 ;
(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.
20.(8分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PD=PG,DF⊥PG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF.
(1)求证:DF=PG;
(2)若PC=1,求四边形PEFD的面积.
21.(10分)如图,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
22.(10分)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示
分组
频数
4.0≤x<4.2
2
4.2≤x<4.4
3
4.4≤x<4.6
5
4.6≤x<4.8
8
4.8≤x<5.0
17
5.0≤x<5.2
5
(1)求活动所抽取的学生人数;
(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;
(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果.
23.(12分)已知关于的一元二次方程 (为实数且).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值.
24.(14分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额﹣生产费用)
(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)
(2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?
(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
朝上的数字为偶数的有3种可能,再根据概率公式即可计算.
【详解】
依题意得P(朝上一面的数字是偶数)=
故选B.
【点睛】
此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.
2、B
【解析】
阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
【详解】
由旋转可知AD=BD,
∵∠ACB=90°,AC=2,
∴CD=BD,
∵CB=CD,
∴△BCD是等边三角形,
∴∠BCD=∠CBD=60°,
∴BC=AC=2,
∴阴影部分的面积=2×2÷2−=2−.
故答案选:B.
【点睛】
本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.
3、C
【解析】
根据轴对称图形的概念求解.
【详解】
A、是轴对称图形,故错误;
B、是轴对称图形,故错误;
C、不是轴对称图形,故正确;
D、是轴对称图形,故错误.
故选C.
【点睛】
本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
4、C
【解析】
由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.
【详解】
解:∵BE平分∠ABC,
∴∠CBE=∠ABE,
∵ED垂直平分AB于D,
∴EA=EB,
∴∠A=∠ABE,
∴∠CBE=30°,
∴BE=2EC,即AE=2EC,
而AE+EC=AC=9,
∴AE=1.
故选C.
5、A
【解析】
根据俯视图即从物体的上面观察得得到的视图,进而得出答案.
【详解】
该几何体的俯视图是:.
故选A.
【点睛】
此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.
6、B
【解析】
y<0时,即x轴下方的部分,
∴自变量x的取值范围分两个部分是−1
故选B.
7、B
【解析】
平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.
【详解】
平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小。
∵OD⊥BC,BC⊥AB,
∴OD∥AB,
又∵OC=OA,
∴OD是△ABC的中位线,
∴OD=AB=3,
∴DE=2OD=6.
故选:B.
【点睛】
本题考查了平行四边形的性质,解题的关键是利用三角形中位线定理进行求解.
8、B
【解析】
首先确定a=1,b=-3,c=1,然后求出△=b2-4ac的值,进而作出判断.
【详解】
∵a=1,b=-3,c=1,
∴△=(-3)2-4×1×1=5>0,
∴一元二次方程x2-3x+1=0两个不相等的实数根;
故选B.
【点睛】
此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.
9、B
【解析】
试题解析:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③,故选B.
10、C
【解析】
试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.
∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,
所以应在③段上.
故选C
考点:实数与数轴的关系
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
∵在Rt△ABC中,BC=6,sinA=
∴AB=10
∴.
∵D是AB的中点,∴AD=AB=1.
∵∠C=∠EDA=90°,∠A=∠A
∴△ADE∽△ACB,
∴
即
解得:DE=.
12、2;
【解析】
试题解析:先求-2的平方4,再求它的算术平方根,即:.
13、
【解析】
由题中所给条件证明△ADF△ACG,可求出的值.
【详解】
解:在△ADF和△ACG中,
AB=6,AC=5,D是边AB的中点
AG是∠BAC的平分线,
∴∠DAF=∠CAG
∠ADE=∠C
∴△ADF△ACG
∴.
故答案为.
【点睛】
本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.
14、
【解析】
根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.
【详解】
根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.
故其概率为:.
【点睛】
本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.
15、①②③⑤
【解析】
根据图象可判断①②③④⑤,由x=1时,y<0,可判断⑥
【详解】
由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=
∴abc>0,4ac<b2,当时,y随x的增大而减小.故①②⑤正确,
∵
∴2a+b>0,
故③正确,
由图象可得顶点纵坐标小于﹣2,则④错误,
当x=1时,y=a+b+c<0,故⑥错误
故答案为:①②③⑤
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物
线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
16、30°
【解析】
分别过A、B作l1的平行线AC和BD,则可知AC∥BD∥l1∥l2,再利用平行线的性质求得答案.
【详解】
如图,分别过A、B作l1的平行线AC和BD,
∵l1∥l2,
∴AC∥BD∥l1∥l2,
∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,
∵∠EAB+∠FBA=125°+85°=210°,
∴∠EAC+∠CAB+∠DBA+∠FBD=210°,
即∠1+∠2+180°=210°,
∴∠1+∠2=30°,
故答案为30°.
【点睛】
本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.
17、35°
【解析】
分析:先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°-∠3代入数据进行计算即可得解.
详解:∵直尺的两边互相平行,∠1=25°,
∴∠3=∠1=25°,
∴∠2=60°-∠3=60°-25°=35°.
故答案为35°.
点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.
三、解答题(共7小题,满分69分)
18、(1);(2)
【解析】
(1)根据概率公式计算可得;
(2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.
【详解】
解:(1)由于共有A、B、W三个座位,
∴甲选择座位W的概率为,
故答案为:;
(2)画树状图如下:
由图可知,共有6种等可能结果,其中甲、乙选择相邻的座位有两种,
所以P(甲乙相邻)==.
【点睛】
此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
19、(1)2;(2)3,﹣2,或﹣1或1.(3)﹣2<x<﹣1或x>1.
【解析】
试题分析:(1)求出x=﹣1时的函数值即可解决问题;利用描点法画出图象即可;
(2)利用图象以及表格即可解决问题;
(3)不等式x3+2x2>x+2的解集,即为函数y=x3+2x2﹣x﹣2的函数值大于2的自变量的取值范围,观察图象即可解决问题.
试题解析:(1)由题意m=﹣1+2+1﹣2=2.
函数图象如图所示.
(2)根据表格和图象可知,方程的解有3个,分别为﹣2,或﹣1或1.
(3)不等式x3+2x2>x+2的解集,即为函数y=x3+2x2﹣x﹣2的函数值大于2的自变量的取值范围.
观察图象可知,﹣2<x<﹣1或x>1.
20、(1)证明见解析;(2)1.
【解析】
作PM⊥AD,在四边形ABCD和四边形ABPM证AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;还有两个直角即可证明△ADF≌△MPG,从而得出对应边相等
(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根据旋转,得出∠EPG=90°,PE=PG从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH 的值;最后根据面积公式得出
【详解】
解:(1)证明:∵四边形ABCD为正方形,
∴AD=AB,
∵四边形ABPM为矩形,
∴AB=PM,
∴AD=PM,
∵DF⊥PG,
∴∠DHG=90°,
∴∠GDH+∠DGH=90°,
∵∠MGP+∠MPG=90°,
∴∠GDH=∠MPG,
在△ADF和△MPG中,
∴△ADF≌△MPG(ASA),
∴DF=PG;
(2)作PM⊥DG于M,如图,
∵PD=PG,
∴MG=MD,
∵四边形ABCD为矩形,
∴PCDM为矩形,
∴PC=MD,
∴DG=2PC=2;
∵△ADF≌△MPG(ASA),
∴DF=PG,
而PD=PG,
∴DF=PD,
∵线段PG绕点P逆时针旋转90°得到线段PE,
∴∠EPG=90°,PE=PG,
∴PE=PD=DF,
而DF⊥PG,
∴DF∥PE,
即DF∥PE,且DF=PE,
∴四边形PEFD为平行四边形,
在Rt△PCD中,PC=1,CD=3,
∴PD==,
∴DF=PG=PD=,
∵四边形CDMP是矩形,
∴PM=CD=3,MD=PC=1,
∵PD=PG,PM⊥AD,
∴MG=MD=1,DG=2,
∵∠GDH=∠MPG,∠DHG=∠PMG=90°,
∴△DHG∽△PMG,
∴,
∴GH==,
∴PH=PG﹣GH=﹣=,
∴四边形PEFD的面积=DF•PH=×=1.
【点睛】
本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值
21、(1)作图见解析(2)∠BDC=72°
【解析】
解:(1)作图如下:
(2)∵在△ABC中,AB=AC,∠ABC=72°,
∴∠A=180°﹣2∠ABC=180°﹣144°=36°.
∵AD是∠ABC的平分线,∴∠ABD=∠ABC=×72°=36°.
∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.
(1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线:
①以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;
②分别以点E、F为圆心,大于EF为半径画圆,两圆相较于点G,连接BG交AC于点D.
(2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的性质得出
∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可.
22、(1)所抽取的学生人数为40人(2)37.5%(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好
【解析】
【分析】(1)求出频数之和即可;
(2)根据合格率=合格人数÷总人数×100%即可得解;
(3)从两个不同的角度分析即可,答案不唯一.
【详解】(1)∵频数之和=3+6+7+9+10+5=40,
∴所抽取的学生人数为40人;
(2)活动前该校学生的视力达标率=×100%=37.5%;
(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少;
②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好.
【点睛】本题考查了频数分布直方图、用样本估计总体等知识,熟知频数、合格率等相关概念是解题的关键.
23、 (1)证明见解析;(2)或.
【解析】
(1)求出△的值,再判断出其符号即可;
(2)先求出x的值,再由方程的两个实数根都是整数,且m是正整数求出m的值即可.
【详解】
(1)依题意,得
,
,
.
∵,
∴方程总有两个实数根.
(2)∵,
∴,.
∵方程的两个实数根都是整数,且是正整数,
∴或.
∴或.
【点睛】
本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac的关系是解答此题的关键.
24、(1)y=x1.z=﹣x+30(0≤x≤100);(1)年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)今年最多可获得毛利润1080万元
【解析】
(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;
(1)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x的函数关系式,再利用配方法求出最值即可;
(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.
【详解】
(1)图①可得函数经过点(100,1000),
设抛物线的解析式为y=ax1(a≠0),
将点(100,1000)代入得:1000=10000a,
解得:a=,
故y与x之间的关系式为y=x1.
图②可得:函数经过点(0,30)、(100,10),
设z=kx+b,则,
解得: ,
故z与x之间的关系式为z=﹣x+30(0≤x≤100);
(1)W=zx﹣y=﹣x1+30x﹣x1
=﹣x1+30x
=﹣(x1﹣150x)
=﹣(x﹣75)1+1115,
∵﹣<0,
∴当x=75时,W有最大值1115,
∴年产量为75万件时毛利润最大,最大毛利润为1115万元;
(3)令y=360,得x1=360,
解得:x=±60(负值舍去),
由图象可知,当0<y≤360时,0<x≤60,
由W=﹣(x﹣75)1+1115的性质可知,
当0<x≤60时,W随x的增大而增大,
故当x=60时,W有最大值1080,
答:今年最多可获得毛利润1080万元.
【点睛】
本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.
江苏省无锡市锡中市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份江苏省无锡市锡中市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了若分式有意义,则a的取值范围是等内容,欢迎下载使用。
江苏省无锡市江阴市华士片重点中学2022年中考数学最后冲刺模拟试卷含解析: 这是一份江苏省无锡市江阴市华士片重点中学2022年中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了一个正比例函数的图象过点等内容,欢迎下载使用。
2022年江苏省无锡市江阴市长泾片重点名校中考数学最后冲刺模拟试卷含解析: 这是一份2022年江苏省无锡市江阴市长泾片重点名校中考数学最后冲刺模拟试卷含解析,共17页。试卷主要包含了反比例函数是y=的图象在,下列算式的运算结果正确的是等内容,欢迎下载使用。