|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年江苏省无锡市江阴市长泾片重点名校中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    2022年江苏省无锡市江阴市长泾片重点名校中考数学最后冲刺模拟试卷含解析01
    2022年江苏省无锡市江阴市长泾片重点名校中考数学最后冲刺模拟试卷含解析02
    2022年江苏省无锡市江阴市长泾片重点名校中考数学最后冲刺模拟试卷含解析03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省无锡市江阴市长泾片重点名校中考数学最后冲刺模拟试卷含解析

    展开
    这是一份2022年江苏省无锡市江阴市长泾片重点名校中考数学最后冲刺模拟试卷含解析,共17页。试卷主要包含了反比例函数是y=的图象在,下列算式的运算结果正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )

    A.3.5 B.3 C.4 D.4.5
    2.观察下列图形,其中既是轴对称图形,又是中心对称图形的是(  )
    A. B. C. D.
    3.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为(  )

    A.2:3 B.3:2 C.4:5 D.4:9
    4. “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )
    A.567×103 B.56.7×104 C.5.67×105 D.0.567×106
    5.反比例函数是y=的图象在(  )
    A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限
    6.估计的运算结果应在哪个两个连续自然数之间(  )
    A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣4
    7.下列算式的运算结果正确的是(  )
    A.m3•m2=m6 B.m5÷m3=m2(m≠0)
    C.(m﹣2)3=m﹣5 D.m4﹣m2=m2
    8.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )
    A. B. C. D.
    9.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是(  )
    A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤7
    10.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )

    A.8 B.6 C.4 D.2
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,正方形ABCD和正方形OEFG中, 点A和点F的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.

    12.已知函数,当 时,函数值y随x的增大而增大.
    13.已知一个斜坡的坡度,那么该斜坡的坡角的度数是______.
    14.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.
    15.已知数据x1,x2,…,xn的平均数是,则一组新数据x1+8,x2+8,…,xn+8的平均数是____.
    16.若m﹣n=4,则2m2﹣4mn+2n2的值为_____.
    17.不等式组的解集是__________.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.
    (1)求抛物线的解析式;
    (2)当PO+PC的值最小时,求点P的坐标;
    (3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.

    19.(5分)如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).
    (1)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;
    (2)画出△ABC绕原点O旋转180°后得到的图形△A2B2C2,并写出B2点的坐标;
    (3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.

    20.(8分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
    (拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
    (应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)

    21.(10分)如图:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°
    求证:(1)△PAC∽△BPD;
    (2)若AC=3,BD=1,求CD的长.

    22.(10分)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.分别求出y1,y2与x之间的关系式;当甲、乙两个商场的收费相同时,所买商品为多少件?当所买商品为5件时,应选择哪个商场更优惠?请说明理由.
    23.(12分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书.
    (1)求甲、乙2名学生在不同书店购书的概率;
    (2)求甲、乙、丙3名学生在同一书店购书的概率.
    24.(14分)如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.

    (1)求该二次函数的解析式及点M的坐标;
    (2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;
    (3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    解:∵∠ACB=90°,∠ABC=60°,
    ∴∠A=10°,
    ∵BD平分∠ABC,
    ∴∠ABD=∠ABC=10°,
    ∴∠A=∠ABD,
    ∴BD=AD=6,
    ∵在Rt△BCD中,P点是BD的中点,
    ∴CP=BD=1.
    故选B.
    2、C
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、既不是轴对称图形,也不是中心对称图形.故本选项错误;
    B、是轴对称图形,不是中心对称图形.故本选项错误;
    C、是轴对称图形,也是中心对称图形.故本选项正确;
    D、既不是轴对称图形,也不是中心对称图形.故本选项错误.
    故选C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    3、A
    【解析】
    根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.
    【详解】
    由位似变换的性质可知,A′B′∥AB,A′C′∥AC,
    ∴△A′B′C′∽△ABC,
    ∵△A'B'C'与△ABC的面积的比4:9,
    ∴△A'B'C'与△ABC的相似比为2:3,
    ∴ ,
    故选A.
    【点睛】
    本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
    4、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
    【详解】
    567000=5.67×105,
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    5、B
    【解析】
    解:∵反比例函数是y=中,k=2>0,
    ∴此函数图象的两个分支分别位于一、三象限.
    故选B.
    6、C
    【解析】
    根据二次根式的性质,可化简得=﹣3=﹣2,然后根据二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之间.
    故选C.
    点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.
    7、B
    【解析】
    直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案.
    【详解】
    A、m3•m2=m5,故此选项错误;
    B、m5÷m3=m2(m≠0),故此选项正确;
    C、(m-2)3=m-6,故此选项错误;
    D、m4-m2,无法计算,故此选项错误;
    故选:B.
    【点睛】
    此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键.
    8、D
    【解析】
    先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.
    【详解】
    随机掷一枚均匀的硬币两次,落地后情况如下:

    至少有一次正面朝上的概率是,
    故选:D.
    【点睛】
    本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
    9、A
    【解析】
    先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.
    【详解】
    解:解不等式3x﹣m+1>0,得:x>,
    ∵不等式有最小整数解2,
    ∴1≤<2,
    解得:4≤m<7,
    故选A.
    【点睛】
    本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.
    10、A
    【解析】
    试题解析:由于点A、B在反比例函数图象上关于原点对称,
    则△ABC的面积=2|k|=2×4=1.
    故选A.
    考点:反比例函数系数k的几何意义.

    二、填空题(共7小题,每小题3分,满分21分)
    11、(1,0);(﹣5,﹣2).
    【解析】
    本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.
    【详解】
    ∵正方形ABCD和正方形OEFG中A和点F的坐标分别为(3,2),(-1,-1),
    ∴E(-1,0)、G(0,-1)、D(5,2)、B(3,0)、C(5,0),
    (1)当E和C是对应顶点,G和A是对应顶点时,位似中心就是EC与AG的交点,
    设AG所在直线的解析式为y=kx+b(k≠0),
    ∴,解得.
    ∴此函数的解析式为y=x-1,与EC的交点坐标是(1,0);
    (2)当A和E是对应顶点,C和G是对应顶点时,位似中心就是AE与CG的交点,
    设AE所在直线的解析式为y=kx+b(k≠0),
    ,解得,
    故此一次函数的解析式为…①,
    同理,设CG所在直线的解析式为y=kx+b(k≠0),
    ,解得,
    故此直线的解析式为…②
    联立①②得
    解得,故AE与CG的交点坐标是(-5,-2).
    故答案为:(1,0)、(-5,-2).
    12、x≤﹣1.
    【解析】
    试题分析:∵=,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y随x的增大而增大,故答案为x≤﹣1.
    考点:二次函数的性质.
    13、
    【解析】
    坡度=坡角的正切值,据此直接解答.
    【详解】
    解:∵,
    ∴坡角=30°.
    【点睛】
    此题主要考查学生对坡度及坡角的理解及掌握.
    14、28
    【解析】
    设这种电子产品的标价为x元,
    由题意得:0.9x−21=21×20%,
    解得:x=28,
    所以这种电子产品的标价为28元.
    故答案为28.
    15、
    【解析】
    根据数据x1,x2,…,xn的平均数为=(x1+x2+…+xn),即可求出数据x1+1,x2+1,…,xn+1的平均数.
    【详解】
    数据x1+1,x2+1,…,xn+1的平均数=(x1+1+x2+1+…+xn+1)=(x1+x2+…+xn)+1=+1.
    故答案为+1.
    【点睛】
    本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.
    16、1
    【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴当m﹣n=4时,原式=2×42=1.故答案为:1.
    17、x≥1
    【解析】
    分析:分别求出两个不等式的解,从而得出不等式组的解集.
    详解:解不等式①可得:x≥1, 解不等式②可得:x>-3, ∴不等式组的解为x≥1.
    点睛:本题主要考查的是不等式组的解集,属于基础题型.理解不等式的性质是解决这个问题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)y=x2+3x;(2)当PO+PC的值最小时,点P的坐标为(2,);(3)存在,具体见解析.
    【解析】
    (1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
    (2)D与P重合时有最小值,求出点D的坐标即可;
    (3)存在,分别根据①AC为对角线,②AC为边,两种情况,分别求解即可.
    【详解】
    (1)在矩形OABC中,OA=4,OC=3,
    ∴A(4,0),C(0,3),
    ∵抛物线经过O、A两点,且顶点在BC边上,
    ∴抛物线顶点坐标为(2,3),
    ∴可设抛物线解析式为y=a(x﹣2)2+3,
    把A点坐标代入可得0=a(4﹣2)2+3,解得a=,
    ∴抛物线解析式为y=(x﹣2)2+3,即y=x2+3x;
    (2)∵点P在抛物线对称轴上,∴PA=PO,∴PO+PC= PA+PC.
    ∴当点P与点D重合时,PA+PC= AC;当点P不与点D重合时,PA+PC> AC;
    ∴当点P与点D重合时,PO+PC的值最小,
    设直线AC的解析式为y=kx+b,
    根据题意,得解得
    ∴直线AC的解析式为,
    当x=2时,,
    ∴当PO+PC的值最小时,点P的坐标为(2,);
    (3)存在.

    ①AC为对角线,当四边形AQCP为平行四边形,点Q为抛物线的顶点,即Q(2,3),则P(2,0);
    ②AC为边,当四边形AQPC为平行四边形,点C向右平移2个单位得到P,则点A向右平移2个单位得到点Q,则Q点的横坐标为6,当x=6时,,此时Q(6,−9),则点A(4,0)向右平移2个单位,向下平移9个单位得到点Q,所以点C(0,3)向右平移2个单位,向下平移9个单位得到点P,则P(2,−6);
    当四边形APQC为平行四边形,点A向左平移2个单位得到P,则点C向左平移2个单位得到点Q,则Q点的横坐标为−2,当x=−2时,,此时Q(−2,−9),则点C(0,3)向左平移2个单位,向下平移12个单位得到点Q,所以点A(4,0)向左平移2个单位,向下平移12个单位得到点P,则P(2,−12);
    综上所述,P(2,0),Q(2,3)或P(2,−6),Q(6,−9)或P(2,−12),Q(−2,−9).
    【点睛】
    二次函数的综合应用,涉及矩形的性质、待定系数法、平行四边形的性质、方程思想及分类讨论思想等知识.
    19、(1)画图见解析;(2)画图见解析;(3)画图见解析.
    【解析】
    试题分析:(1)、根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)、根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可;(3)、找出点A关于x轴的对称点A′,连接A′B与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可.
    试题解析:(1)、△A1B1C1如图所示;B1点的坐标(-4,2)
    (2)、△A2B2C2如图所示;B2点的坐标:(-4,-2)
    (3)、△PAB如图所示,P(2,0).

    考点:(1)、作图-旋转变换;(2)、轴对称-最短路线问题;(3)、作图-平移变换.
    20、见解析
    【解析】
    试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
    应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
    试题解析:
    探究:∵四边形ABCD、四边形CEFG均为菱形,
    ∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
    ∵∠A=∠F,
    ∴∠BCD=∠ECG.
    ∴∠BCD-∠ECD=∠ECG-∠ECD,
    即∠BCE=∠DCG.
    在△BCE和△DCG中,

    ∴△BCE≌△DCG(SAS),
    ∴BE=DG.
    应用:∵四边形ABCD为菱形,
    ∴AD∥BC,
    ∵BE=DG,
    ∴S△ABE+S△CDE=S△BEC=S△CDG=8,
    ∵AE=3ED,
    ∴S△CDE= ,
    ∴S△ECG=S△CDE+S△CDG=10
    ∴S菱形CEFG=2S△ECG=20.
    21、(1)见解析;(2).
    【解析】
    (1)由△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,从而即可证明;
    (2)根据相似三角形对应边成比例即可求出PC=PD=,再由勾股定理即可求解.
    【详解】
    证明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,
    ∴∠APC+∠BPD=45°,
    又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,
    ∴∠PAB=∠PBD,∠BPD=∠PAC,
    ∵∠PCA=∠PDB,
    ∴△PAC∽△BPD;
    (2)∵,PC=PD,AC=3,BD=1
    ∴PC=PD=,
    ∴CD=.
    【点睛】
    本题考查了相似三角形的判定与性质及等腰直角三角形,属于基础题,关键是掌握相似三角形的判定方法.
    22、(1);y2=2250x;
    (2)甲、乙两个商场的收费相同时,所买商品为6件;
    (3)所买商品为5件时,应选择乙商场更优惠.
    【解析】
    试题分析:(1)由两家商场的优惠方案分别列式整理即可;
    (2)由收费相同,列出方程求解即可;
    (3)由函数解析式分别求出x=5时的函数值,即可得解
    试题解析:(1)当x=1时,y1=3000;
    当x>1时,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+1.
    ∴;
    y2=3000x(1﹣25%)=2250x,
    ∴y2=2250x;
    (2)当甲、乙两个商场的收费相同时,2100x+1=2250x,
    解得x=6,
    答:甲、乙两个商场的收费相同时,所买商品为6件;
    (3)x=5时,y1=2100x+1=2100×5+1=11400,
    y2=2250x=2250×5=11250,
    ∵11400>11250,
    ∴所买商品为5件时,应选择乙商场更优惠.
    考点:一次函数的应用
    23、(1)P=;(2)P=.
    【解析】
    试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
    试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:

    从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,
    所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=;
    (2)甲、乙、丙三名学生AB两个书店购书的所有可能结果有:

    从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,
    所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=.
    点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    24、(1)y=﹣x2+2x+4;M(1,5);(2)2<m<4;(3)P1(),P2(),P3(3,1),P4(﹣3,7).
    【解析】
    试题分析:(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标;(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;(3)由题意分析可得∠MCP=90°,则若△PCM与△BCD相似,则要进行分类讨论,分成△PCM∽△BDC或△PCM∽△CDB两种,然后利用边的对应比值求出点坐标.
    试题解析:(1)把点A(3,1),点C(0,4)代入二次函数y=﹣x2+bx+c得,
    解得 ∴二次函数解析式为y=﹣x2+2x+4, 配方得y=﹣(x﹣1)2+5,
    ∴点M的坐标为(1,5);
    (2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得, 解得:
    ∴直线AC的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC两边分别交于点E、点F
    把x=1代入直线AC解析式y=﹣x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)
    ∴1<5﹣m<3,解得2<m<4;
    (3)连接MC,作MG⊥y轴并延长交AC于点N,则点G坐标为(0,5) ∵MG=1,GC=5﹣4=1
    ∴MC==, 把y=5代入y=﹣x+4解得x=﹣1,则点N坐标为(﹣1,5),
    ∵NG=GC,GM=GC, ∴∠NCG=∠GCM=45°, ∴∠NCM=90°,
    由此可知,若点P在AC上,则∠MCP=90°,则点D与点C必为相似三角形对应点
    ①若有△PCM∽△BDC,则有
    ∵BD=1,CD=3, ∴CP===, ∵CD=DA=3, ∴∠DCA=45°,
    若点P在y轴右侧,作PH⊥y轴, ∵∠PCH=45°,CP= ∴PH==
    把x=代入y=﹣x+4,解得y=, ∴P1();
    同理可得,若点P在y轴左侧,则把x=﹣代入y=﹣x+4,解得y= ∴P2();
    ②若有△PCM∽△CDB,则有 ∴CP==3 ∴PH=3÷=3,
    若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;
    若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7
    ∴P3(3,1);P4(﹣3,7).
    ∴所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(﹣3,7).

    考点:二次函数综合题

    相关试卷

    江苏省无锡市江阴市长泾片2021-2022学年中考数学全真模拟试题含解析: 这是一份江苏省无锡市江阴市长泾片2021-2022学年中考数学全真模拟试题含解析,共17页。试卷主要包含了点A,若二元一次方程组的解为则的值为等内容,欢迎下载使用。

    江苏省无锡市江阴市华士片重点中学2022年中考数学最后冲刺模拟试卷含解析: 这是一份江苏省无锡市江阴市华士片重点中学2022年中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了一个正比例函数的图象过点等内容,欢迎下载使用。

    2022年江苏省江阴市长泾片市级名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年江苏省江阴市长泾片市级名校中考数学最后冲刺浓缩精华卷含解析,共25页。试卷主要包含了考生要认真填写考场号和座位序号,﹣的绝对值是,下列四个命题中,真命题是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map