搜索
    上传资料 赚现金
    英语朗读宝

    2022届江苏省南京秦淮区南航附中中考数学模拟预测试卷含解析

    2022届江苏省南京秦淮区南航附中中考数学模拟预测试卷含解析第1页
    2022届江苏省南京秦淮区南航附中中考数学模拟预测试卷含解析第2页
    2022届江苏省南京秦淮区南航附中中考数学模拟预测试卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省南京秦淮区南航附中中考数学模拟预测试卷含解析

    展开

    这是一份2022届江苏省南京秦淮区南航附中中考数学模拟预测试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,函数y=的自变量x的取值范围是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是(  )

    A.12 B.14 C.16 D.18
    2.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是

    A.点A和点C B.点B和点D
    C.点A和点D D.点B和点C
    3.下列各数是不等式组的解是(  )
    A.0 B. C.2 D.3
    4.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )

    A.1 B. C. D.
    5.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( )
    A.y=2x2+3 B.y=2x2﹣3
    C.y=2(x+3)2 D.y=2(x﹣3)2
    6.如图,若AB∥CD,则α、β、γ之间的关系为(  )

    A.α+β+γ=360° B.α﹣β+γ=180°
    C.α+β﹣γ=180° D.α+β+γ=180°
    7.函数y=的自变量x的取值范围是( )
    A.x≠2 B.x<2 C.x≥2 D.x>2
    8.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是(  )

    A. B. C. D.
    9.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是(  )

    A.110 B.158 C.168 D.178
    10.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:
    ①线段MN的长;
    ②△PAB的周长;
    ③△PMN的面积;
    ④直线MN,AB之间的距离;
    ⑤∠APB的大小.
    其中会随点P的移动而变化的是( )

    A.②③ B.②⑤ C.①③④ D.④⑤
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.
    12.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.

    13.用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为   cm2(精确到1cm2).

    14.一组数据4,3,5,x,4,5的众数和中位数都是4,则x=_____.
    15.如图,线段 AB 是⊙O 的直径,弦 CD⊥AB,AB=8,∠CAB=22.5°,则 CD的长等于___________________________.

    16.如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则的大小为________.

    三、解答题(共8题,共72分)
    17.(8分)(1)问题发现
    如图1,在Rt△ABC中,∠A=90°,=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接 CD.
    (1)①求的值;②求∠ACD的度数.
    (2)拓展探究
    如图 2,在Rt△ABC中,∠A=90°,=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B 的数量关系以及PB与CD之间的数量关系,并说明理由.
    (3)解决问题
    如图 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若 PA=5,请直接写出CD的长.

    18.(8分)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.
    (1)求a和k的值;
    (2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC的面积.

    19.(8分)小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局.
    (1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?
    (2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家.用树形图或列表法求只进行两局游戏便能确定赢家的概率.
    20.(8分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.
    (1)如图1,猜想∠QEP=   °;
    (2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;
    (3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.

    21.(8分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q.
    (1)求AB的长;
    (2)当BQ的长为时,请通过计算说明圆P与直线DC的位置关系.

    22.(10分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).

    23.(12分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:

    (1)这次参与调查的村民人数为   人;
    (2)请将条形统计图补充完整;
    (3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;
    (4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.
    24.计算:﹣|﹣2|+()﹣1﹣2cos45°



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】

    延长线段BN交AC于E.
    ∵AN平分∠BAC,∴∠BAN=∠EAN.
    在△ABN与△AEN中,
    ∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,
    ∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.
    又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,
    ∴AC=AE+CE=10+6=16.故选C.
    2、C
    【解析】
    根据相反数的定义进行解答即可.
    【详解】
    解:由A表示-2,B表示-1,C表示0.75,D表示2.
    根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.
    故答案为C.
    【点睛】
    本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.
    3、D
    【解析】
    求出不等式组的解集,判断即可.
    【详解】

    由①得:x>-1,
    由②得:x>2,
    则不等式组的解集为x>2,即3是不等式组的解,
    故选D.
    【点睛】
    此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    4、C
    【解析】
    连接AE,OD,OE.

    ∵AB是直径, ∴∠AEB=90°.
    又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.
    ∵OA=OD.∴△AOD是等边三角形.∴∠A=60°.
    又∵点E为BC的中点,∠AED=90°,∴AB=AC.
    ∴△ABC是等边三角形,
    ∴△EDC是等边三角形,且边长是△ABC边长的一半2,高是.
    ∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.
    ∴阴影部分的面积=.故选C.
    5、C
    【解析】
    按照“左加右减,上加下减”的规律,从而选出答案.
    【详解】
    y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.
    【点睛】
    本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.
    6、C
    【解析】
    过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.
    【详解】
    解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,
    ∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,
    ∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.
    故选:C.

    【点睛】
    本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.
    7、D
    【解析】
    根据被开放式的非负性和分母不等于零列出不等式即可解题.
    【详解】
    解:∵函数y=有意义,
    ∴x-20,
    即x>2
    故选D
    【点睛】
    本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.
    8、D
    【解析】试题分析:俯视图是从上面看到的图形.
    从上面看,左边和中间都是2个正方形,右上角是1个正方形,
    故选D.
    考点:简单组合体的三视图
    9、B
    【解析】
    根据排列规律,10下面的数是12,10右面的数是14,
    ∵8=2×4−0,22=4×6−2,44=6×8−4,
    ∴m=12×14−10=158.
    故选C.
    10、B
    【解析】
    试题分析:
    ①、MN=AB,所以MN的长度不变;
    ②、周长C△PAB=(AB+PA+PB),变化;
    ③、面积S△PMN=S△PAB=×AB·h,其中h为直线l与AB之间的距离,不变;
    ④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;
    ⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.
    故选B
    考点:动点问题,平行线间的距离处处相等,三角形的中位线

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2
    【解析】
    试题分析:当x+3≥﹣x+1,
    即:x≥﹣1时,y=x+3,
    ∴当x=﹣1时,ymin=2,
    当x+3<﹣x+1,
    即:x<﹣1时,y=﹣x+1,
    ∵x<﹣1,
    ∴﹣x>1,
    ∴﹣x+1>2,
    ∴y>2,
    ∴ymin=2,
    12、
    【解析】
    解:如图,连接AC,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB.
    在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,∴S四边形AECF=S△ABC=BC•AH=BC•=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,∴△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又∵S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大,∴S△CEF=S四边形AECF﹣S△AEF=﹣×× =.
    故答案为:.

    点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE≌△ACF,得出四边形AECF的面积是定值是解题的关键.
    13、174cm1.
    【解析】

    直径为10cm的玻璃球,玻璃球半径OB=5,所以AO=18−5=13,由勾股定理得,AB=11,
    ∵BD×AO=AB×BO,BD=,
    圆锥底面半径=BD=,圆锥底面周长=1×π,侧面面积=×1×π×11=.
    点睛: 利用勾股定理可求得圆锥的母线长,进而过B作出垂线,得到圆锥的底面半径,那么圆锥的侧面积=底面周长×母线长÷1.本题是一道综合题,考查的知识点较多,利用了勾股定理,圆的周长公式、圆的面积公式和扇形的面积公式求解.把实际问题转化为数学问题求解是本题的解题关键.
    14、1
    【解析】
    一组数据中出现次数最多的数据叫做众数,由此可得出答案.
    【详解】
    ∵一组数据1,3,5,x,1,5的众数和中位数都是1,
    ∴x=1,
    故答案为1.
    【点睛】
    本题考查了众数的知识,解答本题的关键是掌握众数的定义.
    15、4
    【解析】
    连接 OC,如图所示,由直径 AB 垂直于 CD,利用垂径定理得到 E 为CD 的中点,即 CE=DE,由 OA=OC,利用等边对等角得到一对角相等,确定出三角形 COE 为等腰直角三角形,求出 CE 的长,进而得出 CD.
    【详解】
    连接 OC,如图所示:
    ∵AB 是⊙O 的直径,弦 CD⊥AB,
    ∴OC= AB=4,
    ∵OA=OC,
    ∴∠A=∠OCA=22.5°,
    ∵∠COE 为△AOC 的外角,
    ∴∠COE=45°,
    ∴△COE 为等腰直角三角形,
    ∴CE= OC=,
    ∴CD=2CE=,
    故答案为.
    【点睛】
    考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.
    16、40°
    【解析】
    根据旋转的性质可得出AB=AD、∠BAD=100°,再根据等腰三角形的性质可求出∠B的度数,此题得解.
    【详解】
    根据旋转的性质,可得:AB=AD,∠BAD=100°,
    ∴∠B=∠ADB=×(180°−100°)=40°.
    故填:40°.
    【点睛】
    本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B的度数是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)1,45°;(2)∠ACD=∠B, =k;(3).
    【解析】
    (1)根据已知条件推出△ABP≌△ACD,根据全等三角形的性质得到PB=CD,∠ACD=∠B=45°,于是得到
    根据已知条件得到△ABC∽△APD,由相似三角形的性质得到,得到 ABP∽△CAD,根据相似三角形的性质得到结论;
    过A作AH⊥BC 于 H,得到△ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到根据相似三角形的性质得到 ,推出△ABP∽△CAD,根据相似三角形的性质即可得到结论.
    【详解】
    (1)∵∠A=90°,

    ∴AB=AC,
    ∴∠B=45°,
    ∵∠PAD=90°,∠APD=∠B=45°,
    ∴AP=AD,
    ∴∠BAP=∠CAD,
    在△ABP 与△ACD 中,
    AB=AC, ∠BAP=∠CAD,AP=AD,
    ∴△ABP≌△ACD,
    ∴PB=CD,∠ACD=∠B=45°,
    ∴=1,
    (2)
    ∵∠BAC=∠PAD=90°,∠B=∠APD,
    ∴△ABC∽△APD,

    ∵∠BAP+∠PAC=∠PAC+∠CAD=90°,
    ∴∠BAP=∠CAD,
    ∴△ABP∽△CAD,
    ∴∠ACD=∠B,

    (3)过 A 作 AH⊥BC 于 H,

    ∵∠B=45°,
    ∴△ABH 是等腰直角三角形,

    ∴AH=BH=4,
    ∵BC=12,
    ∴CH=8,

    ∴PH==3,
    ∴PB=1,
    ∵∠BAC=∠PAD=,∠B=∠APD,
    ∴△ABC∽△APD,
    ∴,
    ∵∠BAP+∠PAC=∠PAC+∠CAD,
    ∴∠BAP=∠CAD,
    ∴△ABP∽△CAD,
    ∴即

    过 A 作 AH⊥BC 于 H,

    ∵∠B=45°,
    ∴△ABH 是等腰直角三角形,

    ∴AH=BH=4,
    ∵BC=12,
    ∴CH=8,

    ∴PH==3,
    ∴PB=7,
    ∵∠BAC=∠PAD=,∠B=∠APD,
    ∴△ABC∽△APD,
    ∴,
    ∵∠BAP+∠PAC=∠PAC+∠CAD,
    ∴∠BAP=∠CAD,
    ∴△ABP∽△CAD,
    ∴即

    【点睛】
    本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定
    和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.
    18、(1)a=2,k=8(2) =1.
    【解析】
    分析:(1)把A(-1,a)代入反比例函数得到A(-1,2),过A作AE⊥x轴于E,BF⊥x轴于F,根据相似三角形的性质得到B(4,2),于是得到k=4×2=8;
    (2)求的直线AO的解析式为y=-2x,设直线MN的解析式为y=-2x+b,得到直线MN的解析式为y=-2x+10,解方程组得到C(1,8),于是得到结论.
    详解:(1)∵反比例函数y=﹣(x<0)的图象过点A(﹣1,a),
    ∴a=﹣=2,
    ∴A(﹣1,2),
    过A作AE⊥x轴于E,BF⊥⊥x轴于F,
    ∴AE=2,OE=1,
    ∵AB∥x轴,
    ∴BF=2,
    ∵∠AOB=90°,
    ∴∠EAO+∠AOE=∠AOE+∠BOF=90°,
    ∴∠EAO=∠BOF,
    ∴△AEO∽△OFB,
    ∴,
    ∴OF=4,
    ∴B(4,2),
    ∴k=4×2=8;
    (2)∵直线OA过A(﹣1,2),
    ∴直线AO的解析式为y=﹣2x,
    ∵MN∥OA,
    ∴设直线MN的解析式为y=﹣2x+b,
    ∴2=﹣2×4+b,
    ∴b=10,
    ∴直线MN的解析式为y=﹣2x+10,
    ∵直线MN交x轴于点M,交y轴于点N,
    ∴M(5,0),N(0,10),
    解得,,
    ∴C(1,8),
    ∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=1.

    点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.
    19、(1),(2)
    【解析】
    解:(1)画树状图得:

    ∵总共有9种等可能情况,每人获胜的情形都是3种,
    ∴两人获胜的概率都是.
    (2)由(1)可知,一局游戏每人胜、负、和的机会均等,都为.任选其中一人的情形可画树状图得:

    ∵总共有9种等可能情况,当出现(胜,胜)或(负,负)这两种情形时,赢家产生,
    ∴两局游戏能确定赢家的概率为:.
    (1)根据题意画出树状图或列表,由图表求得所有等可能的结果与在一局游戏中两人获胜的情况,利用概率公式即可求得答案.
    (2)因为由(1)可知,一局游戏每人胜、负、和的机会均等,都为.可画树状图,由树状图求得所有等可能的结果与进行两局游戏便能确定赢家的情况,然后利用概率公式求解即可求得答案.
    20、(1)∠QEP=60°;(2)∠QEP=60°,证明详见解析;(3)
    【解析】
    (1)如图1,先根据旋转的性质和等边三角形的性质得出∠PCA=∠QCB,进而可利用SAS证明△CQB≌△CPA,进而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的内角和定理即可求得∠QEP=∠QCP,从而完成猜想;
    (2)以∠DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明△ACP≌△BCQ,可得∠APC=∠Q,进一步即可证得结论;
    (3)仿(2)可证明△ACP≌△BCQ,于是AP=BQ,再求出AP的长即可,作CH⊥AD于H,如图3,易证∠APC=30°,△ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.
    【详解】
    解:(1)∠QEP=60°;
    证明:连接PQ,如图1,由题意得:PC=CQ,且∠PCQ=60°,
    ∵△ABC是等边三角形,∴∠ACB=60°,∴∠PCA=∠QCB,
    则在△CPA和△CQB中,

    ∴△CQB≌△CPA(SAS),
    ∴∠CQB=∠CPA,
    又因为△PEM和△CQM中,∠EMP=∠CMQ,
    ∴∠QEP=∠QCP=60°.
    故答案为60;

    (2)∠QEP=60°.以∠DAC是锐角为例.
    证明:如图2,∵△ABC是等边三角形,
    ∴AC=BC,∠ACB=60°,
    ∵线段CP绕点C顺时针旋转60°得到线段CQ,
    ∴CP=CQ,∠PCQ=60°,
    ∴∠ACB+∠BCP=∠BCP+∠PCQ,
    即∠ACP=∠BCQ,
    在△ACP和△BCQ中,

    ∴△ACP≌△BCQ(SAS),
    ∴∠APC=∠Q,
    ∵∠1=∠2,
    ∴∠QEP=∠PCQ=60°; 

    (3)连结CQ,作CH⊥AD于H,如图3,
    与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,
    ∵∠DAC=135°,∠ACP=15°,
    ∴∠APC=30°,∠CAH=45°,
    ∴△ACH为等腰直角三角形,
    ∴AH=CH=AC=×4=,
    在Rt△PHC中,PH=CH=,
    ∴PA=PH−AH=-,
    ∴BQ=−.
    【点睛】
    本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30°角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.
    21、(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.
    【解析】
    (1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;
    (2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=,得到PA=AB-PB=,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=,根据切线的判定定理即可得到结论.
    【详解】
    (1)过A作AE⊥BC于E,
    则四边形AECD是矩形,
    ∴CE=AD=1,AE=CD=3,
    ∵AB=BC,
    ∴BE=AB-1,
    在Rt△ABE中,∵AB2=AE2+BE2,
    ∴AB2=32+(AB-1)2,
    解得:AB=5;
    (2)过P作PF⊥BQ于F,
    ∴BF=BQ=,
    ∴△PBF∽△ABE,
    ∴,
    ∴,
    ∴PB=,
    ∴PA=AB-PB=,
    过P作PG⊥CD于G交AE于M,
    ∴GM=AD=1,
    ∵DC⊥BC
    ∴PG∥BC
    ∴△APM∽△ABE,
    ∴,
    ∴,
    ∴PM=,
    ∴PG=PM+MG==PB,
    ∴圆P与直线DC相切.

    【点睛】
    本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.
    22、(6+)米
    【解析】
    根据已知的边和角,设CQ=x,BC=QC=x,PC=BC=3x,根据PQ=BQ列出方程求解即可.
    【详解】
    解:延长PQ交地面与点C,

    由题意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,设CQ=x,则在Rt△BQC中,BC=QC=x,∴在Rt△PBC中PC=BC=3x,∵在Rt△PAC中,∠PAC=45°,则PC=AC,∴,3x=6+x,解得x==3+,∴PQ=PC-CQ=3x-x=2x=6+,则电线杆PQ高为(6+)米.
    【点睛】
    此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.
    23、 (1)120;(2)42人;(3) 90°;(4)
    【解析】
    (1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数;
    (2)利用条形统计图以及样本数量得出喜欢广场舞的人数;
    (3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;
    (4)利用树状图法列举出所有的可能进而得出概率.
    【详解】
    (1)这次参与调查的村民人数为:24÷20%=120(人);
    故答案为:120;
    (2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),
    如图所示:

    (3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;
    (4)如图所示:

    一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,
    故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:.
    【点睛】
    此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,正确列举出所有可能是解题关键.
    24、+1
    【解析】
    分析:直接利用二次根式的性质、负指数幂的性质和特殊角的三角函数值分别化简求出答案.
    详解:原式=2﹣2+3﹣2×
    =2+1﹣
    =+1.
    点睛:本题主要考查了实数运算,正确化简各数是解题的关键.

    相关试卷

    2023-2024学年江苏省南京秦淮区南航附中八年级数学第一学期期末质量跟踪监视模拟试题含答案:

    这是一份2023-2024学年江苏省南京秦淮区南航附中八年级数学第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若,则下列式子错误的是,下列命题是假命题的是等内容,欢迎下载使用。

    2022-2023学年江苏省南京秦淮区南航附中数学七下期末联考模拟试题含答案:

    这是一份2022-2023学年江苏省南京秦淮区南航附中数学七下期末联考模拟试题含答案,共6页。

    2023年江苏省南京市秦淮区中考数学二模试卷(含解析):

    这是一份2023年江苏省南京市秦淮区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map