年终活动
搜索
    上传资料 赚现金

    2021-2022学年江苏省连云港市海州区市级名校中考数学全真模拟试卷含解析

    2021-2022学年江苏省连云港市海州区市级名校中考数学全真模拟试卷含解析第1页
    2021-2022学年江苏省连云港市海州区市级名校中考数学全真模拟试卷含解析第2页
    2021-2022学年江苏省连云港市海州区市级名校中考数学全真模拟试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省连云港市海州区市级名校中考数学全真模拟试卷含解析

    展开

    这是一份2021-2022学年江苏省连云港市海州区市级名校中考数学全真模拟试卷含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是(  )

    A. B. C. D.
    2.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为(  )

    A.3a+2b B.3a+4b C.6a+2b D.6a+4b
    3.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为(  )
    A.0.5×10﹣4 B.5×10﹣4 C.5×10﹣5 D.50×10﹣3
    4.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为(  )
    A.18元 B.36元 C.54元 D.72元
    5.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )
    A. B.
    C. D.
    6.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=(  )
    A.3﹣ B.(+1) C.﹣1 D.(﹣1)
    7.平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )

    A.60° B.50° C.40° D.30°
    8.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是(  )

    A.AE=BF B.∠ADE=∠BEF
    C.△DEF是等边三角形 D.△BEF是等腰三角形
    9.数据”1,2,1,3,1”的众数是( )
    A.1 B.1.5 C.1.6 D.3
    10.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为(  )
    A.180元 B.200元 C.225元 D.259.2元
    11.下列标志中,可以看作是轴对称图形的是( )
    A. B. C. D.
    12.已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是(  )
    A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.数据5,6,7,4,3的方差是 .
    14.已知实数m,n满足,,且,则= .
    15.如果,那么______.
    16.因式分解=______.
    17.已知关于x的方程有解,则k的取值范围是_____.
    18.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)计算: +()﹣2﹣|1﹣|﹣(π+1)0.
    20.(6分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为   件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.
    21.(6分)已知线段a及如图形状的图案.
    (1)用直尺和圆规作出图中的图案,要求所作图案中圆的半径为a(保留作图痕迹)
    (2)当a=6时,求图案中阴影部分正六边形的面积.

    22.(8分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.
    (1)按约定,“某顾客在该天早餐得到两个鸡蛋”是   事件(填“随机”、“必然”或“不可能”);
    (2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.
    23.(8分)如图,已知A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点.

    (1)若a=1,求反比例函数的解析式及b的值;
    (2)在(1)的条件下,根据图象直接回答:当x取何值时,反比例函数大于一次函数的值?
    (3)若a﹣b=4,求一次函数的函数解析式.
    24.(10分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?

    25.(10分)如图1,四边形ABCD中,,,点P为DC上一点,且,分别过点A和点C作直线BP的垂线,垂足为点E和点F.
    证明:∽;
    若,求的值;
    如图2,若,设的平分线AG交直线BP于当,时,求线段AG的长.

    26.(12分)雾霾天气严重影响市民的生活质量。在今年寒假期间,某校九年级一班的综合实践小组学生对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了下图所示的不完整的统计图表:
    组别
    雾霾天气的主要成因
    百分比
    A
    工业污染
    45%
    B
    汽车尾气排放

    C
    炉烟气排放
    15%
    D
    其他(滥砍滥伐等)


    请根据统计图表回答下列问题:本次被调查的市民共有多少人?并求和的值;请补全条形统计图,并计算扇形统计图中扇形区域所对应的圆心角的度数;若该市有100万人口,请估计市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数.
    27.(12分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
    (1)求证:△BDE≌△BCE;
    (2)试判断四边形ABED的形状,并说明理由.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    从正面看第一层是三个小正方形,第二层左边一个小正方形,
    故选:A.
    2、A
    【解析】
    根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.
    【详解】
    依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.
    故这块矩形较长的边长为3a+2b.故选A.
    【点睛】
    本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.
    3、C
    【解析】
    绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,
    0.00005=,
    故选C.
    4、D
    【解析】
    设y与x之间的函数关系式为y=kπx2,由待定系数法就可以求出解析式,再求出x=6时y的值即可得.
    【详解】
    解:根据题意设y=kπx2,
    ∵当x=3时,y=18,
    ∴18=kπ•9,
    则k=,
    ∴y=kπx2=•π•x2=2x2,
    当x=6时,y=2×36=72,
    故选:D.
    【点睛】
    本题考查了二次函数的应用,解答时求出函数的解析式是关键.
    5、C
    【解析】
    根据全等三角形的判定定理进行判断.
    【详解】
    解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,
    故本选项不符合题意;
    B、由全等三角形的判定定理SAS证得图中两个小三角形全等,
    故本选项不符合题意;
    C、

    如图1,∵∠DEC=∠B+∠BDE,
    ∴x°+∠FEC=x°+∠BDE,
    ∴∠FEC=∠BDE,
    所以其对应边应该是BE和CF,而已知给的是BD=FC=3,
    所以不能判定两个小三角形全等,故本选项符合题意;
    D、

    如图2,∵∠DEC=∠B+∠BDE,
    ∴x°+∠FEC=x°+∠BDE,
    ∴∠FEC=∠BDE,
    ∵BD=EC=2,∠B=∠C,
    ∴△BDE≌△CEF,
    所以能判定两个小三角形全等,故本选项不符合题意;
    由于本题选择可能得不到全等三角形纸片的图形,
    故选C.
    【点睛】
    本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.
    6、C
    【解析】
    根据黄金分割点的定义,知BC为较长线段;则BC= AB,代入数据即可得出BC的值.
    【详解】
    解:由于C为线段AB=2的黄金分割点,且AC<BC,BC为较长线段;
    则BC=2×=-1.
    故答案为:-1.
    【点睛】
    本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 倍,较长的线段=原线段的 倍.
    7、C
    【解析】
    先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.
    【详解】
    解:∵∠1=180°﹣100°=80°,a∥c,
    ∴∠α=180°﹣80°﹣60°=40°.
    故选:C.

    【点睛】
    本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.
    8、D
    【解析】
    连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.
    【详解】
    连接BD,∵四边形ABCD是菱形,
    ∴AD=AB,∠ADB=∠ADC,AB∥CD,
    ∵∠A=60°,
    ∴∠ADC=120°,∠ADB=60°,
    同理:∠DBF=60°,
    即∠A=∠DBF,
    ∴△ABD是等边三角形,
    ∴AD=BD,
    ∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
    ∴∠ADE=∠BDF,
    ∵在△ADE和△BDF中,

    ∴△ADE≌△BDF(ASA),
    ∴DE=DF,AE=BF,故A正确;
    ∵∠EDF=60°,
    ∴△EDF是等边三角形,
    ∴C正确;
    ∴∠DEF=60°,
    ∴∠AED+∠BEF=120°,
    ∵∠AED+∠ADE=180°-∠A=120°,
    ∴∠ADE=∠BEF;
    故B正确.
    ∵△ADE≌△BDF,
    ∴AE=BF,
    同理:BE=CF,
    但BE不一定等于BF.
    故D错误.
    故选D.
    【点睛】
    本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.
    9、A
    【解析】
    众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.
    【详解】
    在这一组数据中1是出现次数最多的,故众数是1.
    故选:A.
    【点睛】
    本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    10、A
    【解析】
    设这种商品每件进价为x元,根据题中的等量关系列方程求解.
    【详解】
    设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.
    【点睛】
    本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.
    11、D
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、不是轴对称图形,是中心对称图形,不符合题意;
    B、不是轴对称图形,是中心对称图形,不符合题意;
    C、不是轴对称图形,是中心对称图形,不符合题意;
    D、是轴对称图形,符合题意.
    故选D.
    【点睛】
    本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.
    12、C
    【解析】
    根据不等式的性质得出x的解集,进而解答即可.
    【详解】
    ∵-1<2x+b<1
    ∴,
    ∵关于x的不等式组-1<2x+b<1的解满足0<x<2,
    ∴,
    解得:-3≤b≤-1,
    故选C.
    【点睛】
    此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    先求平均数,再根据方差的公式S1=[(x1-)1+(x1-)1+…+(xn-)1]计算即可.
    【详解】
    解:∵=(5+6+7+4+3)÷5=5,
    ∴数据的方差S1=×[(5-5)1+(6-5)1+(7-5)1+(4-5)1+(3-5)1]=1.
    故答案为:1.
    考点:方差.
    14、.
    【解析】
    试题分析:由时,得到m,n是方程的两个不等的根,根据根与系数的关系进行求解.
    试题解析:∵时,则m,n是方程3x2﹣6x﹣5=0的两个不相等的根,∴,.
    ∴原式===,故答案为.
    考点:根与系数的关系.
    15、;
    【解析】
    先对等式进行转换,再求解.
    【详解】

    ∴3x=5x-5y
    ∴2x=5y

    【点睛】
    本题考查的是分式,熟练掌握分式是解题的关键.
    16、.
    【解析】
    解:==,故答案为:.
    17、k≠1
    【解析】
    试题分析:因为,所以1-x+2(x-2)=-k,所以1-x+2x-4=-k,所以x=3-k,所以,因为原方程有解,所以,解得.
    考点:分式方程.
    18、k>
    【解析】
    由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围.
    【详解】
    ∵关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,
    ∴△>0,即(2k+1)2-4(k2+1)>0,
    解得k>,
    故答案为k>.
    【点睛】
    本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、
    【解析】
    先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可求解;
    【详解】
    解:原式


    【点睛】
    考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计算法则是解题的关键.
    20、(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元.
    【解析】
    分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;
    (2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.
    详解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),
    故答案为180;
    (2)由题意得:
    y=(x﹣40)[200﹣10(x﹣50)]
    =﹣10x2+1100x﹣28000
    =﹣10(x﹣55)2+2250
    ∴每件销售价为55元时,获得最大利润;最大利润为2250元.
    点睛:此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.
    21、(1)如图所示见解析,(2)当半径为6时,该正六边形的面积为
    【解析】
    试题分析:
    (1)先画一半径为a的圆,再作所画圆的六等分点,如图所示,连接所得六等分点,作出两个等边三角形即可;
    (2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,由已知条件先求出AB和OE的长,再求出CD的长,即可求得△OCD的面积,这样即可由S阴影=6S△OCD求出阴影部分的面积了.
    试题解析:
    (1)所作图形如下图所示:

    (2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,则由题意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三边三角形,
    ∴∠ABO=30°,BC=OC=CD=AD,
    ∴BE=OB·cos30°=,OE=3,
    ∴AB=,
    ∴CD=,
    ∴S△OCD=,
    ∴S阴影=6S△OCD=.

    22、(1)不可能;(2).
    【解析】
    (1)利用确定事件和随机事件的定义进行判断;
    (2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.
    【详解】
    (1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;
    故答案为不可能;
    (2)画树状图:

    共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,
    所以某顾客该天早餐刚好得到菜包和油条的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    23、 (1) 反比例函数的解析式为y=,b的值为﹣1;(1) 当x<﹣4或0<x<1时,反比例函数大于一次函数的值;(3) 一次函数的解析式为y=x+1
    【解析】
    (1)由题意得到A(1,4),设反比例函数的解析式为y=(k≠0),根据待定系数法即可得到反比例函数解析式为y=;再由点B(﹣4,b)在反比例函数的图象上,得到b=﹣1;
    (1)由(1)知A(1,4),B(﹣4,﹣1),结合图象即可得到答案;
    (3)设一次函数的解析式为y=mx+n(m≠0),反比例函数的解析式为y=,因为A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点,得到, 解得p=8,a=1,b=﹣1,则A(1,4),B(﹣4,﹣1),由点A、点B在一次函数y=mx+n图象上,得到,解得,即可得到答案.
    【详解】
    (1)若a=1,则A(1,4),
    设反比例函数的解析式为y=(k≠0),
    ∵点A在反比例函数的图象上,
    ∴4=,
    解得k=4,
    ∴反比例函数解析式为y=;
    ∵点B(﹣4,b)在反比例函数的图象上,
    ∴b==﹣1,
    即反比例函数的解析式为y=,b的值为﹣1;
    (1)由(1)知A(1,4),B(﹣4,﹣1),
    根据图象:当x<﹣4或0<x<1时,反比例函数大于一次函数的值;
    (3)设一次函数的解析式为y=mx+n(m≠0),反比例函数的解析式为y=,
    ∵A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点,
    ∴,即,
    ①+②得4a﹣4b=1p,
    ∵a﹣b=4,
    ∴16=1p,
    解得p=8,
    把p=8代入①得4a=8,代入②得﹣4b=8,
    解得a=1,b=﹣1,
    ∴A(1,4),B(﹣4,﹣1),
    ∵点A、点B在一次函数y=mx+n图象上,

    解得
    ∴一次函数的解析式为y=x+1.
    【点睛】
    本题考查一次函数与反比例函数,解题的关键是待定系数法求函数解析式.
    24、R= 或R=
    【解析】
    解:当圆与斜边相切时,则R=,即圆与斜边有且只有一个公共点,当R=时,点A在圆内,点B在圆外或圆上,则圆与斜边有且只有一个公共点.
    考点:圆与直线的位置关系.
    25、(1)证明见解析;(2);(3).
    【解析】
    由余角的性质可得,即可证∽;
    由相似三角形的性质可得,由等腰三角形的性质可得,即可求的值;
    由题意可证∽,可得,可求,由等腰三角形的性质可得AE平分,可证,可得是等腰直角三角形,即可求AG的长.
    【详解】
    证明:,

    又,


    又,

    ∽,

    又,,


    如图,延长AD与BG的延长线交于H点




    ,由可知≌


    代入上式可得,
    ∽,
    ,,

    ,,
    平分
    又平分,

    是等腰直角三角形.
    ∴.
    【点睛】
    本题考查的知识点是全等三角形的判定和性质,相似三角形的判定和性质,解题关键是添加恰当辅助线构造相似三角形.
    26、(1)200人,;(2)见解析,;(3)75万人.
    【解析】
    (1)用A类的人数除以所占的百分比求出被调查的市民数,再用B类的人数除以总人数得出B类所占的百分比m,继而求出n的值即可;
    (2)求出C、D两组人数,从而可补全条形统计图,用360度乘以n即可得扇形区域所对应的圆心角的度数;
    (3)用该市的总人数乘以持有A、B两类所占的百分比的和即可.
    【详解】
    (1)本次被调查的市民共有:(人),
    ∴,;
    (2)组的人数是(人)、组的人数是(人),
    ∴;
    补全的条形统计图如下图所示:

    扇形区域所对应的圆心角的度数为:

    (3)(万),
    ∴若该市有100万人口,市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数约为75万人.
    【点睛】
    本题考查了条形统计图、扇形统计图、统计表,读懂图形,找出必要的信息是解题的关键.
    27、证明见解析.
    【解析】
    (1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;
    (2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.
    【详解】
    (1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,
    ∴DB=CB,∠ABD=∠EBC,∠ABE=60°,
    ∵AB⊥EC,
    ∴∠ABC=90°,
    ∴∠DBE=∠CBE=30°,
    在△BDE和△BCE中,
    ∵,
    ∴△BDE≌△BCE;
    (2)四边形ABED为菱形;
    由(1)得△BDE≌△BCE,
    ∵△BAD是由△BEC旋转而得,
    ∴△BAD≌△BEC,
    ∴BA=BE,AD=EC=ED,
    又∵BE=CE,
    ∴BA=BE=ED= AD
    ∴四边形ABED为菱形.
    考点:旋转的性质;全等三角形的判定与性质;菱形的判定.

    相关试卷

    北京丰台市级名校2021-2022学年中考数学全真模拟试卷含解析:

    这是一份北京丰台市级名校2021-2022学年中考数学全真模拟试卷含解析,共19页。试卷主要包含了按一定规律排列的一列数依次为,估计﹣1的值在,下列各数中,比﹣1大1的是等内容,欢迎下载使用。

    2022年江苏省连云港市海州区市级名校中考二模数学试题含解析:

    这是一份2022年江苏省连云港市海州区市级名校中考二模数学试题含解析,共18页。试卷主要包含了二次函数的最大值为等内容,欢迎下载使用。

    2021-2022学年湖北省竹溪县市级名校中考数学全真模拟试卷含解析:

    这是一份2021-2022学年湖北省竹溪县市级名校中考数学全真模拟试卷含解析,共28页。试卷主要包含了答题时请按要求用笔,若,,则的值是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map