年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年山东省诸城市市级名校中考数学全真模拟试卷含解析

    立即下载
    加入资料篮
    2021-2022学年山东省诸城市市级名校中考数学全真模拟试卷含解析第1页
    2021-2022学年山东省诸城市市级名校中考数学全真模拟试卷含解析第2页
    2021-2022学年山东省诸城市市级名校中考数学全真模拟试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山东省诸城市市级名校中考数学全真模拟试卷含解析

    展开

    这是一份2021-2022学年山东省诸城市市级名校中考数学全真模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,点A,计算的结果为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为(  )
    A.米 B.米 C.米 D.米
    2.如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E,若AE=3cm,△ABD的周长为13cm,则△ABC的周长为(  )

    A.16cm B.19cm C.22cm D.25cm
    3.如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为( )

    A. B. C.3 D.
    4.已知⊙O的半径为13,弦AB∥CD,AB=24,CD=10,则四边形ACDB的面积是(  )
    A.119 B.289 C.77或119 D.119或289
    5.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是(  )
    A.30° B.60° C.30°或150° D.60°或120°
    6.如图,已知△ABC,按以下步骤作图:①分别以 B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 M,N;②作直线 MN 交 AB 于点 D,连接 CD.若 CD=AC,∠A=50°,则∠ACB 的度数为( )

    A.90° B.95° C.105° D.110°
    7.如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:

    转盘总次数
    10
    20
    30
    50
    100
    150
    180
    240
    330
    450
    “和为7”出现频数
    2
    7
    10
    16
    30
    46
    59
    81
    110
    150
    “和为7”出现频率
    0.20
    0.35
    0.33
    0.32
    0.30
    0.30
    0.33
    0.34
    0.33
    0.33
    如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为( )
    A.0.33 B.0.34 C.0.20 D.0.35
    8.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(  )
    A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3
    9.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )

    A. B. C. D.
    10.计算的结果为(  )
    A.2 B.1 C.0 D.﹣1
    11.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为(  )

    A.6 B.5 C.2 D.3
    12.下列算式中,结果等于a5的是(  )
    A.a2+a3 B.a2•a3 C.a5÷a D.(a2)3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.计算:+(|﹣3|)0=_____.
    14.已知a1=,a2=,a3=,a4=,a5=,…,则an=_____.(n为正整数).
    15.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.

    16.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分.
    17.某商品原价100元,连续两次涨价后,售价为144元.若平均每次增长率为,则__________.
    18.如图,在△ABC中,DE∥BC,,则=_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.

    20.(6分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.
    (1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;
    (2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.

    21.(6分)某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整的统计图.

    请你根据图中信息,回答下列问题:
    (1)求本次调查的学生人数,并补全条形统计图;
    (2)在扇形统计图中,求“歌曲”所在扇形的圆心角的度数;
    (3)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?
    22.(8分)解不等式 ,并把它的解集表示在数轴上.

    23.(8分)计算:sin30°•tan60°+..
    24.(10分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:
    等级
    非常了解
    比较了解
    只听说过
    不了解
    频数
    40
    120
    36
    4
    频率
    0.2
    m
    0.18
    0.02
    (1)本次问卷调查取样的样本容量为 ,表中的m值为 ;
    (2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;
    (3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?

    25.(10分)如图已知△ABC,点D是AB上一点,连接CD,请用尺规在边AC上求作点P,使得△PBC的面积与△DBC的面积相等(保留作图痕迹,不写做法)

    26.(12分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.
    (1)求证:△AGE≌△BGF;
    (2)试判断四边形AFBE的形状,并说明理由.

    27.(12分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.求购买A型和B型公交车每辆各需多少万元?预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    35000纳米=35000×10-9米=3.5×10-5米.
    故选C.
    【点睛】
    此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    2、B
    【解析】
    根据作法可知MN是AC的垂直平分线,利用垂直平分线的性质进行求解即可得答案.
    【详解】
    解:根据作法可知MN是AC的垂直平分线,
    ∴DE垂直平分线段AC,
    ∴DA=DC,AE=EC=6cm,
    ∵AB+AD+BD=13cm,
    ∴AB+BD+DC=13cm,
    ∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,
    故选B.
    【点睛】
    本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.
    3、A
    【解析】
    ∵∠AED=∠B,∠A=∠A
    ∴△ADE∽△ACB
    ∴,
    ∵DE=6,AB=10,AE=8,
    ∴,
    解得BC=.
    故选A.
    4、D
    【解析】
    分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理,然后按梯形面积的求解即可.
    【详解】
    解:①当弦AB和CD在圆心同侧时,如图1,

    ∵AB=24cm,CD=10cm,
    ∴AE=12cm,CF=5cm,
    ∴OA=OC=13cm,
    ∴EO=5cm,OF=12cm,
    ∴EF=12-5=7cm;
    ∴四边形ACDB的面积
    ②当弦AB和CD在圆心异侧时,如图2,

    ∵AB=24cm,CD=10cm,
    ∴.AE=12cm,CF=5cm,
    ∵OA=OC=13cm,
    ∴EO=5cm,OF=12cm,
    ∴EF=OF+OE=17cm.
    ∴四边形ACDB的面积
    ∴四边形ACDB的面积为119或289.
    故选:D.
    【点睛】
    本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.
    5、D
    【解析】
    【分析】由图可知,OA=10,OD=1.根据特殊角的三角函数值求出∠AOB的度数,再根据圆周定理求出∠C的度数,再根据圆内接四边形的性质求出∠E的度数即可.
    【详解】由图可知,OA=10,OD=1,
    在Rt△OAD中,
    ∵OA=10,OD=1,AD==,
    ∴tan∠1=,∴∠1=60°,
    同理可得∠2=60°,
    ∴∠AOB=∠1+∠2=60°+60°=120°,
    ∴∠C=60°,
    ∴∠E=180°-60°=120°,
    即弦AB所对的圆周角的度数是60°或120°,
    故选D.

    【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.
    6、C
    【解析】
    根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.
    【详解】
    ∵CD=AC,∠A=50°
    ∴∠CDA=∠A=50°
    ∵∠CDA+∠A+∠DCA=180°
    ∴∠DCA=80°
    根据作图步骤可知,MN垂直平分线段BC
    ∴BD=CD
    ∴∠B=∠BCD
    ∵∠B+∠BCD=∠CDA
    ∴2∠BCD=50°
    ∴∠BCD=25°
    ∴∠ACB=∠ACD+∠BCD=80°+25°=105°
    故选C
    【点睛】
    本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.
    7、A
    【解析】
    根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.
    【详解】
    由表中数据可知,出现“和为7”的概率为0.33.
    故选A.
    【点睛】
    本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
    8、D
    【解析】
    先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.
    【详解】
    ∵反比例函数y=中,k=1>0,
    ∴此函数图象的两个分支在一、三象限,
    ∵x1<x2<0<x1,
    ∴A、B在第三象限,点C在第一象限,
    ∴y1<0,y2<0,y1>0,
    ∵在第三象限y随x的增大而减小,
    ∴y1>y2,
    ∴y2<y1<y1.
    故选D.
    【点睛】
    本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.
    9、B
    【解析】
    由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.
    【详解】
    根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1.
    故选B.
    【点睛】
    此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.
    10、B
    【解析】
    按照分式运算规则运算即可,注意结果的化简.
    【详解】
    解:原式=,故选择B.
    【点睛】
    本题考查了分式的运算规则.
    11、C
    【解析】
    由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴OB=OD,OA=OC,AC=BD,
    ∴OA=OB,
    ∵BE:ED=1:3,
    ∴BE:OB=1:2,
    ∵AE⊥BD,
    ∴AB=OA,
    ∴OA=AB=OB,
    即△OAB是等边三角形,
    ∴∠ABD=60°,
    ∵AE⊥BD,AE=3,
    ∴AB=,
    故选C.
    【点睛】
    此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.
    12、B
    【解析】
    试题解析:A、a2与a3不能合并,所以A选项错误;
    B、原式=a5,所以B选项正确;
    C、原式=a4,所以C选项错误;
    D、原式=a6,所以D选项错误.
    故选B.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    原式= .
    14、.
    【解析】
    观察分母的变化为n的1次幂加1、2次幂加1、3次幂加1…,n次幂加1;分子的变化为:3、5、7、9…2n+1.
    【详解】
    解:∵a1=,a2=,a3=,a4=,a5=,…,
    ∴an=,
    故答案为:.
    【点睛】
    本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.
    15、3或1
    【解析】
    由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC,
    ∴∠ADB=∠CBD,
    ∵∠FBM=∠CBM,
    ∴∠FBD=∠FDB,
    ∴FB=FD=12cm,
    ∵AF=6cm,
    ∴AD=18cm,
    ∵点E是BC的中点,
    ∴CE=BC=AD=9cm,
    要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,
    设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,
    根据题意得:6-t=9-2t或6-t=2t-9,
    解得:t=3或t=1.
    故答案为3或1.
    【点睛】
    本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.
    16、1
    【解析】
    ∵13份试卷成绩,结果如下:3个140分,4个1分,2个130分,2个120分,1个100分,1个80分,
    ∴第7个数是1分,
    ∴中位数为1分,
    故答案为1.
    17、20%.
    【解析】
    试题分析:根据原价为100元,连续两次涨价x后,现价为144元,根据增长率的求解方法,列方程求x.
    试题解析:依题意,有:100(1+x)2=144,
    1+x=±1.2,
    解得:x=20%或-2.2(舍去).
    考点:一元二次方程的应用.
    18、
    【解析】
    先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.
    【详解】
    解:∵DE∥BC,,
    ∴,
    由平行条件易证△ADE△ABC,
    ∴S△ADE:S△ABC=1:9,
    ∴=.
    【点睛】
    本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)50;(2)16;(3)56(4)见解析
    【解析】
    (1)用A等级的频数除以它所占的百分比即可得到样本容量;
    (2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;
    (4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.
    【详解】
    (1)10÷20%=50(名)
    答:本次抽样调查共抽取了50名学生.
    (2)50-10-20-4=16(名)
    答:测试结果为C等级的学生有16名.
    图形统计图补充完整如下图所示:

    (3)700×=56(名)
    答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.
    (4)画树状图为:

    共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,
    所以抽取的两人恰好都是男生的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
    20、(1)45°;(2)26°.
    【解析】
    (1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;
    (2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.
    【详解】
    (1)∵AB是⊙O的直径,∠BAC=38°, ∴∠ACB=90°,
    ∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,
    ∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,
    ∴∠ABD=45°;

    (2)连接OD,
    ∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,
    ∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,
    ∵∠AOD是△ODP的一个外角,
    ∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,
    ∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,
    ∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.
    【点睛】
    本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    21、(1)共调查了50名学生;统计图见解析;(2)72°;(3).
    【解析】
    (1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数,先计算出最喜欢舞蹈类的人数,然后补全条形统计图;
    (2)用360°乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数;
    (3)画树状图展示所有12种等可能的结果数,再找出抽取的2名学生恰好来自同一个班级的结果数,然后根据概率公式求解.
    【详解】
    解:(1)14÷28%=50,
    ∴本次共调查了50名学生.
    补全条形统计图如下.

    (2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数为360°×=72°.
    (3)设一班2名学生为数字“1”,“1”,二班2名学生为数字“2”,“2”,画树状图如下.

    共有12种等可能的结果,其中抽取的2名学生恰好来自同一个班级的结果有4种,
    ∴抽取的2名学生恰好来自同一个班级的概率P==.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
    22、x<5;数轴见解析
    【解析】
    【分析】将(x-2)当做一个整体,先移项,然后再按解一元一次不等式的一般步骤进行求解,求得解集后在数轴上表示即可.
    【详解】移项,得 ,
    去分母,得 ,
    移项,得,
    ∴不等式的解集为,
    在数轴上表示如图所示:

    【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的特点选择恰当的方法进行求解是关键.
    23、
    【解析】
    试题分析:把相关的特殊三角形函数值代入进行计算即可.
    试题解析:原式=.
    24、 (1)200;0.6(2)非常了解20%,比较了解60%; 72°;(3) 900人
    【解析】
    (1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.
    【详解】
    解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6
    (2)非常了解20%,比较了解60%;
    非常了解的圆心角度数:360°×20%=72°

    (3)1500×60%=900(人)
    答:“比较了解”垃圾分类知识的人数约为900人.
    【点睛】
    此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量.
    25、见解析
    【解析】
    三角形的面积相等即同底等高,所以以BC为两个三角形的公共底边,在AC边上寻找到与D到BC距离相等的点即可.
    【详解】

    作∠CDP=∠BCD,PD与AC的交点即P.
    【点睛】
    本题考查了三角形面积的灵活计算,还可以利用三角形的全等来进行解题.
    26、 (1)证明见解析(2)四边形AFBE是菱形
    【解析】
    试题分析:(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;
    (2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.
    试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);
    (2)解:四边形AFBE是菱形,理由如下:
    ∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.
    考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.
    27、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;
    (3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.
    【解析】
    详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,
    解得,
    答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得

    解得:6≤a≤8,
    因为a是整数,
    所以a=6,7,8;
    则(10-a)=4,3,2;
    三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.
    (3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
    ②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
    ③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
    故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
    【点睛】
    此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.

    相关试卷

    北京丰台市级名校2021-2022学年中考数学全真模拟试卷含解析:

    这是一份北京丰台市级名校2021-2022学年中考数学全真模拟试卷含解析,共19页。试卷主要包含了按一定规律排列的一列数依次为,估计﹣1的值在,下列各数中,比﹣1大1的是等内容,欢迎下载使用。

    2022届山东省宁阳县市级名校中考数学全真模拟试题含解析:

    这是一份2022届山东省宁阳县市级名校中考数学全真模拟试题含解析,共18页。试卷主要包含了化简的结果是,如图,将△ABC绕点C等内容,欢迎下载使用。

    2022届山东省威海乳山市市级名校中考数学全真模拟试题含解析:

    这是一份2022届山东省威海乳山市市级名校中考数学全真模拟试题含解析,共17页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map