|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年贵州省铜仁市沿河县市级名校中考数学五模试卷含解析
    立即下载
    加入资料篮
    2021-2022学年贵州省铜仁市沿河县市级名校中考数学五模试卷含解析01
    2021-2022学年贵州省铜仁市沿河县市级名校中考数学五模试卷含解析02
    2021-2022学年贵州省铜仁市沿河县市级名校中考数学五模试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年贵州省铜仁市沿河县市级名校中考数学五模试卷含解析

    展开
    这是一份2021-2022学年贵州省铜仁市沿河县市级名校中考数学五模试卷含解析,共21页。试卷主要包含了下列运算结果正确的是,计算3的结果是,下面几何的主视图是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知反比例函数y=﹣,当﹣3<x<﹣2时,y的取值范围是(  )
    A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣2
    2.下列汽车标志中,不是轴对称图形的是( )
    A. B. C. D.
    3.计算3–(–9)的结果是( )
    A.12 B.–12 C.6 D.–6
    4.下列运算结果正确的是(  )
    A.a3+a4=a7 B.a4÷a3=a C.a3•a2=2a3 D.(a3)3=a6
    5.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为(   )
    A.﹣10= B.+10=
    C.﹣10= D.+10=
    6.计算(ab2)3的结果是(  )
    A.ab5 B.ab6 C.a3b5 D.a3b6
    7.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是(  )
    A.有两个不相等实数根 B.有两个相等实数根
    C.有且只有一个实数根 D.没有实数根
    8.下面几何的主视图是( )

    A. B. C. D.
    9.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC, 且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,∠ABC=60°,则AE的长为(  )

    A. B. C. D.
    10.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是( )

    A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<0
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠A=____°.

    12.方程=1的解是___.
    13.若实数a、b在数轴上的位置如图所示,则代数式|b﹣a|+化简为_____.

    14.因式分解:9a3b﹣ab=_____.
    15.若x2+kx+81是完全平方式,则k的值应是________.
    16.如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为()的圆内切于△ABC,则k的值为________.

    17.已知△ABC中,BC=4,AB=2AC,则△ABC面积的最大值为_______.

    三、解答题(共7小题,满分69分)
    18.(10分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).

    请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?

    19.(5分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.
    (1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;
    (2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.
    (3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.
    ①求∠CAM的度数;
    ②当FH=,DM=4时,求DH的长.

    20.(8分)如图,已知一次函数y=x+m的图象与x轴交于点A(﹣4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1.
    (1)求点B坐标;
    (1)求二次函数y=ax1+bx+c的解析式;
    (3)设一次函数y=x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD是以BD为直角边的直角三角形,求点P的坐标.

    21.(10分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.
    求证:FC∥AB.

    22.(10分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.

    23.(12分)如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.
    (1)求证:∠A=2∠BDF;
    (2)若AC=3,AB=5,求CE的长.

    24.(14分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    分析:
    由题意易得当﹣3<x<﹣2时,函数的图象位于第二象限,且y随x的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了.
    详解:
    ∵在中,﹣6<0,
    ∴当﹣3<x<﹣2时函数的图象位于第二象限内,且y随x的增大而增大,
    ∵当x=﹣3时,y=2,当x=﹣2时,y=3,
    ∴当﹣3<x<﹣2时,2<y<3,
    故选C.
    点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.
    2、C
    【解析】
    根据轴对称图形的概念求解.
    【详解】
    A、是轴对称图形,故错误;
    B、是轴对称图形,故错误;
    C、不是轴对称图形,故正确;
    D、是轴对称图形,故错误.
    故选C.
    【点睛】
    本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
    3、A
    【解析】
    根据有理数的减法,即可解答.
    【详解】

    故选A.
    【点睛】
    本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相
    反数.
    4、B
    【解析】
    分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可.
    【详解】
    A. a3+a4≠a7 ,不是同类项,不能合并,本选项错误;
    B. a4÷a3=a4-3=a;,本选项正确;
    C. a3•a2=a5;,本选项错误;
    D.(a3)3=a9,本选项错误.
    故选B
    【点睛】
    本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单.
    5、B
    【解析】
    根据题意表示出衬衫的价格,利用进价的变化得出等式即可.
    【详解】
    解:设第一批购进x件衬衫,则所列方程为:
    +10=.
    故选B.
    【点睛】
    此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.
    6、D
    【解析】
    试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.
    试题解析:(ab2)3=a3•(b2)3=a3b1.
    故选D.
    考点:幂的乘方与积的乘方.
    7、A
    【解析】
    【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
    【详解】∵a=1,b=1,c=﹣3,
    ∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
    ∴方程x2+x﹣3=0有两个不相等的实数根,
    故选A.
    【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    8、B
    【解析】
    主视图是从物体正面看所得到的图形.
    【详解】
    解:从几何体正面看
    故选B.
    【点睛】
    本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
    9、C
    【解析】
    在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形,∵AC⊥BD,∴平行四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC为等边三角形,∴AD=AB=AC=2,OA=AC=1,
    在矩形OCED中,由勾股定理得:CE=OD=,
    在Rt△ACE中,由勾股定理得:AE=;故选C.
    点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
    10、A
    【解析】
    解:∵二次函数的图象开口向上,∴a>1.
    ∵对称轴在y轴的左边,∴<1.∴b>1.
    ∵图象与y轴的交点坐标是(1,﹣2),过(1,1)点,代入得:a+b﹣2=1.
    ∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.
    把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣3,
    ∵b>1,∴b=2﹣a>1.∴a<2.
    ∵a>1,∴1<a<2.∴1<2a<3.∴﹣3<2a﹣3<1,即﹣3<P<1.
    故选A.
    【点睛】
    本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、50
    【解析】
    试题分析:连结EF,如图,根据圆内接四边形的性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,然后解方程即可.
    试题解析:连结EF,如图,

    ∵四边形ABCD内接于⊙O,
    ∴∠A+∠BCD=180°,
    而∠BCD=∠ECF,
    ∴∠A+∠ECF=180°,
    ∵∠ECF+∠1+∠2=180°,
    ∴∠1+∠2=∠A,
    ∵∠A+∠AEF+∠AFE=180°,
    即∠A+∠AEB+∠1+∠2+∠AFD=180°,
    ∴∠A+80°+∠A=180°,
    ∴∠A=50°.
    考点:圆内接四边形的性质.
    12、x=﹣4
    【解析】
    分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    去分母得:3+2x=x﹣1,
    解得:x=﹣4,
    经检验x=﹣4是分式方程的解.
    【点睛】
    此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    13、2a﹣b.
    【解析】
    直接利用数轴上a,b的位置进而得出b﹣a<0,a>0,再化简得出答案.
    【详解】
    解:由数轴可得:
    b﹣a<0,a>0,
    则|b﹣a|+
    =a﹣b+a
    =2a﹣b.
    故答案为2a﹣b.
    【点睛】
    此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.
    14、ab(3a+1)(3a-1).
    【解析】
    试题分析:原式提取公因式后,利用平方差公式分解即可.
    试题解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).
    考点: 提公因式法与公式法的综合运用.
    15、±1
    【解析】
    试题分析:利用完全平方公式的结构特征判断即可确定出k的值.
    解:∵x2+kx+81是完全平方式,
    ∴k=±1.
    故答案为±1.
    考点:完全平方式.
    16、1
    【解析】
    试题解析:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;
    设圆心为Q,切点为H、E,连接QH、QE.

    ∵在正方形AOBC中,反比例函数y=经过正方形AOBC对角线的交点,
    ∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,
    QH⊥AC,QE⊥BC,∠ACB=90°,
    ∴四边形HQEC是正方形,
    ∵半径为(1-2)的圆内切于△ABC,
    ∴DO=CD,
    ∵HQ2+HC2=QC2,
    ∴2HQ2=QC2=2×(1-2)2,
    ∴QC2=18-32=(1-1)2,
    ∴QC=1-1,
    ∴CD=1-1+(1-2)=2,
    ∴DO=2,
    ∵NO2+DN2=DO2=(2)2=8,
    ∴2NO2=8,
    ∴NO2=1,
    ∴DN×NO=1,
    即:xy=k=1.
    【点睛】此题主要考查了正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=1是解决问题的关键.
    17、
    【解析】
    设AC=x,则AB=2x,根据面积公式得S△ABC=2x ,由余弦定理求得 cosC代入化简S△ABC= ,由三角形三边关系求得 ,由二次函数的性质求得S△ABC取得最大值.
    【详解】
    设AC=x,则AB=2x,根据面积公式得:c= =2x.由余弦定理可得: ,
    ∴S△ABC=2x=2x=
    由三角形三边关系有 ,解得,
    故当时, 取得最大值,
    故答案为: .
    【点睛】
    本题主要考查了余弦定理和面积公式在解三角形中的应用,考查了二次函数的性质,考查了计算能力,当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.

    三、解答题(共7小题,满分69分)
    18、(1)详见解析;(2)40%;(3)105;(4).
    【解析】
    (1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;
    (2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;
    (3)根据样本估计总体的方法计算即可;
    (4)利用概率公式即可得出结论.
    【详解】
    (1)由条形图知,男生共有:10+20+13+9=52人,
    ∴女生人数为100-52=48人,
    ∴参加武术的女生为48-15-8-15=10人,
    ∴参加武术的人数为20+10=30人,
    ∴30÷100=30%,
    参加器乐的人数为9+15=24人,
    ∴24÷100=24%,
    补全条形统计图和扇形统计图如图所示:
    (2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%=40%.
    答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.
    (3)500×21%=105(人).
    答:估计其中参加“书法”项目活动的有105人.
    (4).
    答:正好抽到参加“器乐”活动项目的女生的概率为.
    【点睛】
    此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    19、(1)证明见解析;(2)结论:成立.理由见解析;(3)①30°,②1+.
    【解析】
    (1)只要证明AB=ED,AB∥ED即可解决问题;(2)成立.如图2中,过点M作MG∥DE交CE于G.由四边形DMGE是平行四边形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB∥DE,AB=DE,即可推出四边形ABDE是平行四边形;
    (3)①如图3中,取线段HC的中点I,连接MI,只要证明MI=AM,MI⊥AC,即可解决问题;②设DH=x,则AH= x,AD=2x,推出AM=4+2x,BH=4+2x,由四边形ABDE是平行四边形,推出DF∥AB,推出 ,可得,解方程即可;
    【详解】
    (1)证明:如图1中,

    ∵DE∥AB,
    ∴∠EDC=∠ABM,
    ∵CE∥AM,
    ∴∠ECD=∠ADB,
    ∵AM是△ABC的中线,且D与M重合,
    ∴BD=DC,
    ∴△ABD≌△EDC,
    ∴AB=ED,∵AB∥ED,
    ∴四边形ABDE是平行四边形.
    (2)结论:成立.理由如下:
    如图2中,过点M作MG∥DE交CE于G.

    ∵CE∥AM,
    ∴四边形DMGE是平行四边形,
    ∴ED=GM,且ED∥GM,
    由(1)可知AB=GM,AB∥GM,
    ∴AB∥DE,AB=DE,
    ∴四边形ABDE是平行四边形.
    (3)①如图3中,取线段HC的中点I,连接MI,

    ∵BM=MC,
    ∴MI是△BHC的中位线,
    ∴MI∥BH,MI=BH,
    ∵BH⊥AC,且BH=AM.
    ∴MI=AM,MI⊥AC,
    ∴∠CAM=30°.
    ②设DH=x,则AH=x,AD=2x,
    ∴AM=4+2x,
    ∴BH=4+2x,
    ∵四边形ABDE是平行四边形,
    ∴DF∥AB,
    ∴,
    ∴,
    解得x=1+或1﹣(舍弃),
    ∴DH=1+.
    【点睛】
    本题考查了四边形综合题、平行四边形的判定和性质、直角三角形30度角的判定、平行线分线成比例定理、三角形的中位线定理等知识,解题的关键能正确添加辅助线,构造特殊四边形解决问题.
    20、(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);
    【解析】
    (1)根据y=0.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1.得出可设二次函数y=ax1+bx+c=a(x﹣1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可.
    【详解】
    (1)∵y=x+1交x轴于点A(﹣4,0),
    ∴0=×(﹣4)+m,
    ∴m=1,
    与y轴交于点B,
    ∵x=0,
    ∴y=1
    ∴B点坐标为:(0,1),
    (1)∵二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1
    ∴可设二次函数y=a(x﹣1)1
    把B(0,1)代入得:a=0.5
    ∴二次函数的解析式:y=0.5x1﹣1x+1;
    (3)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点
    由Rt△AOB∽Rt△BOP1
    ∴,
    ∴,
    得:OP1=1,
    ∴P1(1,0),
    (Ⅱ)作P1D⊥BD,连接BP1,
    将y=0.5x+1与y=0.5x1﹣1x+1联立求出两函数交点坐标:
    D点坐标为:(5,4.5),
    则AD=,
    当D为直角顶点时
    ∵∠DAP1=∠BAO,∠BOA=∠ADP1,
    ∴△ABO∽△AP1D,
    ∴, ,
    解得:AP1=11.15,
    则OP1=11.15﹣4=7.15,
    故P1点坐标为(7.15,0);
    ∴点P的坐标为:P1(1,0)和P1(7.15,0).

    【点睛】
    此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.
    21、答案见解析
    【解析】
    利用已知条件容易证明△ADE≌△CFE,得出角相等,然后利用平行线的判定可以证明FC∥AB.
    【详解】
    解:∵E是AC的中点,∴AE=CE.
    在△ADE与△CFE中,∵AE=EC,∠AED=∠CEF,DE=EF,∴△ADE≌△CFE(SAS),∴∠EAD=∠ECF,∴FC∥AB.
    【点睛】
    本题主要考查了全等三角形的性质与判定,平行线的判定定理.通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用.
    22、3
    【解析】
    试题分析:根据AB=30,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.
    试题解析:∵BD3+AD3=63+83=303=AB3,
    ∴△ABD是直角三角形,
    ∴AD⊥BC,
    在Rt△ACD中,CD=,
    ∴S△ABC=BC•AD=(BD+CD)•AD=×33×8=3,
    因此△ABC的面积为3.
    答:△ABC的面积是3.
    考点:3.勾股定理的逆定理;3.勾股定理.
    23、(1)见解析;(2)1
    【解析】
    (1)连接AD,如图,利用圆周角定理得∠ADB=90°,利用切线的性质得OD⊥DF,则根据等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后证明∠COD=∠OAD得到∠CAB=2∠BDF;
    (2)连接BC交OD于H,如图,利用垂径定理得到OD⊥BC,则CH=BH,于是可判断OH为△ABC的中位线,所以OH=1.5,则HD=1,然后证明四边形DHCE为矩形得到CE=DH=1.
    【详解】
    (1)证明:连接AD,如图,

    ∵AB为⊙O的直径,
    ∴∠ADB=90°,
    ∵EF为切线,
    ∴OD⊥DF,
    ∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,
    ∴∠BDF=∠ODA,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∴∠OAD=∠BDF,
    ∵D是弧BC的中点,
    ∴∠COD=∠OAD,
    ∴∠CAB=2∠BDF;
    (2)解:连接BC交OD于H,如图,
    ∵D是弧BC的中点,
    ∴OD⊥BC,
    ∴CH=BH,
    ∴OH为△ABC的中位线,
    ∴,
    ∴HD=2.5-1.5=1,
    ∵AB为⊙O的直径,
    ∴∠ACB=90°,
    ∴四边形DHCE为矩形,
    ∴CE=DH=1.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理.
    24、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.
    【解析】
    【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;
    (1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.
    【详解】(1)∵点A在直线y1=1x﹣1上,
    ∴设A(x,1x﹣1),
    过A作AC⊥OB于C,
    ∵AB⊥OA,且OA=AB,
    ∴OC=BC,
    ∴AC=OB=OC,
    ∴x=1x﹣1,
    x=1,
    ∴A(1,1),
    ∴k=1×1=4,
    ∴;
    (1)∵,解得:,,
    ∴C(﹣1,﹣4),
    由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.

    【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.

    相关试卷

    2023年贵州省铜仁市沿河县第一教育集团中考数学一模试卷(含解析): 这是一份2023年贵州省铜仁市沿河县第一教育集团中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    宁波市鄞州区市级名校2021-2022学年中考数学五模试卷含解析: 这是一份宁波市鄞州区市级名校2021-2022学年中考数学五模试卷含解析,共25页。

    辽宁省市级名校2021-2022学年中考数学五模试卷含解析: 这是一份辽宁省市级名校2021-2022学年中考数学五模试卷含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,估计﹣1的值为,若二次函数的图象经过点,计算-3-1的结果是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map