【全国百强校首发】四川省雅安中学2021-2022学年中考冲刺卷数学试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列说法不正确的是( )
A.选举中,人们通常最关心的数据是众数
B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大
C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
D.数据3,5,4,1,﹣2的中位数是4
2.计算(﹣5)﹣(﹣3)的结果等于( )
A.﹣8 B.8 C.﹣2 D.2
3.计算(﹣)﹣1的结果是( )
A.﹣ B. C.2 D.﹣2
4.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是
A. B.
C. D.
5.下列计算正确的是( )
A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a6
6.下列四个图形中,是中心对称图形的是( )
A. B. C. D.
7.下列各式属于最简二次根式的有( )
A. B. C. D.
8.估计+1的值在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
9.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( )
A.8.23×10﹣6 B.8.23×10﹣7 C.8.23×106 D.8.23×107
10.下列图形中,既是轴对称图形又是中心对称图形的是
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知,如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC= .
12.如果=k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.
13.关于的一元二次方程有两个相等的实数根,则________.
14.分解因式:= .
15.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2018的坐标为_____.
16.如图,Rt△ABC 中,∠C=90° , AB=10,,则AC的长为_______ .
三、解答题(共8题,共72分)
17.(8分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.
18.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4). 请画出△ABC向左平移5个单位长度后得到的△ABC; 请画出△ABC关于原点对称的△ABC; 在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.
19.(8分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.求证:BC是⊙O的切线;设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;若BE=8,sinB=,求DG的长,
20.(8分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,≈1.414)
(1)此时小强头部E点与地面DK相距多少?
(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?
21.(8分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.
22.(10分)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.
(1)求证:;
(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;
(3)若PE=1,求△PBD的面积.
23.(12分)已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作⊙P,则称点Q为⊙P的“关联点”,⊙P为点Q的“关联圆”.
(1)已知⊙O的半径为1,在点E(1,1),F(﹣,),M(0,-1)中,⊙O的“关联点”为______;
(2)若点P(2,0),点Q(3,n),⊙Q为点P的“关联圆”,且⊙Q的半径为,求n的值;
(3)已知点D(0,2),点H(m,2),⊙D是点H的“关联圆”,直线y=﹣x+4与x轴,y轴分别交于点A,B.若线段AB上存在⊙D的“关联点”,求m的取值范围.
24.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.
(1)求证:直线CE是⊙O的切线.
(2)若BC=3,CD=3,求弦AD的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;
B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;
C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;
D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.
故选D.
考点:随机事件发生的可能性(概率)的计算方法
2、C
【解析】分析:减去一个数,等于加上这个数的相反数. 依此计算即可求解.
详解:(-5)-(-3)=-1.
故选:C.
点睛:考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号; ②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数).
3、D
【解析】
根据负整数指数幂与正整数指数幂互为倒数,可得答案.
【详解】
解: ,
故选D.
【点睛】
本题考查了负整数指数幂,负整数指数幂与正整数指数幂互为倒数.
4、C
【解析】
分三段讨论:
①两车从开始到相遇,这段时间两车距迅速减小;
②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;
③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;
结合图象可得C选项符合题意.故选C.
5、D
【解析】
根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.
【详解】
A、2a2﹣a2=a2,故A错误;
B、(ab)2=a2b2,故B错误;
C、a2与a3不是同类项,不能合并,故C错误;
D、(a2)3=a6,故D正确,
故选D.
【点睛】
本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.
6、D
【解析】
试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.
解:A、不是中心对称图形,故本选项错误;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、是中心对称图形,故本选项正确;
故选D.
考点:中心对称图形.
7、B
【解析】
先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.
【详解】
A选项:,故不是最简二次根式,故A选项错误;
B选项:是最简二次根式,故B选项正确;
C选项:,故不是最简二次根式,故本选项错误;
D选项:,故不是最简二次根式,故D选项错误;
故选:B.
【点睛】
考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.
8、B
【解析】
分析:直接利用2<<3,进而得出答案.
详解:∵2<<3,
∴3<+1<4,
故选B.
点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.
9、B
【解析】
分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
详解:0.000000823=8.23×10-1.
故选B.
点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
10、D
【解析】
根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;
B. 不是轴对称图形,是中心对称图形,故不符合题意;
C. 是轴对称图形,但不是中心对称图形,故不符合题意;
D. 既是轴对称图形又是中心对称图形,故符合题意.
故选D.
【点睛】
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
试题分析:根据DE∥FG∥BC可得△ADE∽△AFG∽ABC,根据题意可得EG:AC=DF:AB=2:6=1:3,根据EG=3,则AC=1.
考点:三角形相似的应用.
12、3
【解析】
∵=k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),
∵a+c+e=3(b+d+f),∴k=3,
故答案为:3.
13、-1.
【解析】
根据根的判别式计算即可.
【详解】
解:依题意得:
∵关于的一元二次方程有两个相等的实数根,
∴= =4-41(-k)=4+4k=0
解得,k=-1.
故答案为:-1.
【点睛】
本题考查了一元二次方程根的判别式,当=>0时,方程有两个不相等的实数根;当==0时,方程有两个相等的实数根;当=<0时,方程无实数根.
14、a(a+2)(a-2)
【解析】
15、(6054,2)
【解析】
分析:
分析题意和图形可知,点B1、B3、B5、……在x轴上,点B2、B4、B6、……在第一象限内,由已知易得AB=,结合旋转的性质可得OA+AB1+B1C2=6,从而可得点B2的坐标为(6,2),同理可得点B4的坐标为(12,2),即点B2相当于是由点B向右平移6个单位得到的,点B4相当于是由点B2向右平移6个单位得到的,由此即可推导得到点B2018的坐标.
详解:
∵在△AOB中,∠AOB=90°,OA=,OB=2,
∴AB=,
∴由旋转的性质可得:OA+AB1+B1C2=OA+AB+OB=6,C2B2=OB=2,
∴点B2的坐标为(6,2),
同理可得点B4的坐标为(12,2),
由此可得点B2相当于是由点B向右平移6个单位得到的,点B4相当于是由点B2向右平移6个单位得到,
∴点B2018相当于是由点B向右平移了:个单位得到的,
∴点B2018的坐标为(6054,2).
故答案为:(6054,2).
点睛:读懂题意,结合旋转的性质求出点B2和点B4的坐标,分析找到其中点B的坐标的变化规律,是正确解答本题的关键.
16、8
【解析】
在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的长.
【详解】
∵Rt△ABC中,∠C=90°,AB=10
∴cosB=,得BC=6
由勾股定理得BC=
故答案为8.
【点睛】
此题主要考查锐角三角函数在直角三形中的应用及勾股定理.
三、解答题(共8题,共72分)
17、 (1)26°;(2)1.
【解析】
试题分析:(1)根据垂径定理,得到,再根据圆周角与圆心角的关系,得知∠E=∠O,据此即可求出∠DEB的度数;
(2)由垂径定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的长.
试题解析:(1)∵AB是⊙O的一条弦,OD⊥AB,
∴,
∴∠DEB=∠AOD=×52°=26°;
(2)∵AB是⊙O的一条弦,OD⊥AB,
∴AC=BC,即AB=2AC,
在Rt△AOC中,AC===4,
则AB=2AC=1.
考点:垂径定理;勾股定理;圆周角定理.
18、(1)图形见解析;
(2)图形见解析;
(3)图形见解析,点P的坐标为:(2,0)
【解析】
(1)按题目的要求平移就可以了
关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可
(3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.
【详解】
(1)△A1B1C1如图所示;
(2)△A2B2C2如图所示;
(3)△PAB如图所示,点P的坐标为:(2,0)
【点睛】
1、图形的平移;2、中心对称;3、轴对称的应用
19、 (1)证明见解析;(2)AD=;(3)DG=.
【解析】
(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;
(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;
(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.
【详解】
(1)如图,连接OD,
∵AD为∠BAC的角平分线,
∴∠BAD=∠CAD,
∵OA=OD,
∴∠ODA=∠OAD,
∴∠ODA=∠CAD,
∴OD∥AC,
∵∠C=90°,
∴∠ODC=90°,
∴OD⊥BC,
∴BC为圆O的切线;
(2)连接DF,由(1)知BC为圆O的切线,
∴∠FDC=∠DAF,
∴∠CDA=∠CFD,
∴∠AFD=∠ADB,
∵∠BAD=∠DAF,
∴△ABD∽△ADF,
∴,即AD2=AB•AF=xy,
则AD= ;
(3)连接EF,在Rt△BOD中,sinB=,
设圆的半径为r,可得,
解得:r=5,
∴AE=10,AB=18,
∵AE是直径,
∴∠AFE=∠C=90°,
∴EF∥BC,
∴∠AEF=∠B,
∴sin∠AEF=,
∴AF=AE•sin∠AEF=10×=,
∵AF∥OD,
∴,即DG=AD,
∴AD=,
则DG=.
【点睛】
圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.
20、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.
【解析】
试题分析:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;
(2)求出OH、PH的值即可判断;
试题解析:解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.
∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.
(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.
21、 (1)证明见解析;(2)
【解析】
试题分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;
(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.
试题解析:(1)证明:连接OD,CD,
∵BC为⊙O直径,
∴∠BDC=90°,
即CD⊥AB,
∵△ABC是等腰三角形,
∴AD=BD,
∵OB=OC,
∴OD是△ABC的中位线,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∵D点在⊙O上,
∴DE为⊙O的切线;
(2)解:∵∠A=∠B=30°,BC=4,
∴CD=BC=2,BD=BC•cos30°=2,
∴AD=BD=2,AB=2BD=4,
∴S△ABC=AB•CD=×4×2=4,
∵DE⊥AC,
∴DE=AD=×2=,
AE=AD•cos30°=3,
∴S△ODE=OD•DE=×2×=,
S△ADE=AE•DE=××3=,
∵S△BOD=S△BCD=×S△ABC=×4=,
∴S△OEC=S△ABC-S△BOD-S△ODE-S△ADE=4---=.
22、 (1)见解析;(2) AC∥BD,理由见解析;(3)
【解析】
(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,进而得出答案;
(2)首先得出△PCE∽△DCB,进而求出∠ACB=∠CBD,即可得出AC与BD的位置关系;
(3)首先利用相似三角形的性质表示出BD,PM的长,进而根据三角形的面积公式得到△PBD的面积.
【详解】
(1)证明:∵△BCE和△CDP均为等腰直角三角形,
∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,
∴△BCE∽△DCP,
∴;
(2)解:结论:AC∥BD,
理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,
∴∠PCE=∠BCD,
又∵,
∴△PCE∽△DCB,
∴∠CBD=∠CEP=90°,
∵∠ACB=90°,
∴∠ACB=∠CBD,
∴AC∥BD;
(3)解:如图所示:作PM⊥BD于M,
∵AC=4,△ABC和△BEC均为等腰直角三角形,
∴BE=CE=4,
∵△PCE∽△DCB,
∴,即,
∴BD=,
∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,
∴PM=5sin45°=
∴△PBD的面积S=BD•PM=××=.
【点睛】
本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.
23、(1)F,M;(1)n=1或﹣1;(3)≤m≤或 ≤m≤.
【解析】
(1)根据定义,认真审题即可解题,
(1)在直角三角形PHQ中勾股定理解题即可,
(3)当⊙D与线段AB相切于点T时,由sin∠OBA=,得DT=DH1=,进而求出m1=即可,②当⊙D过点A时,连接AD.由勾股定理得DA==DH1=即可解题.
【详解】
解:(1)∵OF=OM=1,
∴点F、点M在⊙上,
∴F、M是⊙O的“关联点”,
故答案为F,M.
(1)如图1,过点Q作QH⊥x轴于H.
∵PH=1,QH=n,PQ=.
∴由勾股定理得,PH1+QH1=PQ1,
即11+n1=()1,
解得,n=1或﹣1.
(3)由y=﹣x+4,知A(3,0),B(0,4)
∴可得AB=5
①如图1(1),当⊙D与线段AB相切于点T时,连接DT.
则DT⊥AB,∠DTB=90°
∵sin∠OBA=,
∴可得DT=DH1=,
∴m1=,
②如图1(1),当⊙D过点A时,连接AD.
由勾股定理得DA==DH1=.
综合①②可得:≤m≤或 ≤m≤.
【点睛】
本题考查圆的新定义问题, 三角函数和勾股定理的应用,难度较大,分类讨论,迁移知识理解新定义是解题关键.
24、(1)证明见解析(2)
【解析】
(1)连结OC,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;
(2)由△CDB∽△CAD,可得,推出CD2=CB•CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,,设BD=k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解决问题.
【详解】
(1)证明:连结OC,如图,
∵AD平分∠EAC,
∴∠1=∠3,
∵OA=OD,
∴∠1=∠2,
∴∠3=∠2,
∴OD∥AE,
∵AE⊥DC,
∴OD⊥CE,
∴CE是⊙O的切线;
(2)∵∠CDO=∠ADB=90°,
∴∠2=∠CDB=∠1,∵∠C=∠C,
∴△CDB∽△CAD,
∴,
∴CD2=CB•CA,
∴(3)2=3CA,
∴CA=6,
∴AB=CA﹣BC=3,,设BD=k,AD=2k,
在Rt△ADB中,2k2+4k2=5,
∴k=,
∴AD=.
2022届【全国百强校首发】四川省阆中学中学中考冲刺卷数学试题含解析: 这是一份2022届【全国百强校首发】四川省阆中学中学中考冲刺卷数学试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数y=3,的绝对值是等内容,欢迎下载使用。
2021-2022学年【全国百强校首发】四川省阆中学中学中考数学押题卷含解析: 这是一份2021-2022学年【全国百强校首发】四川省阆中学中学中考数学押题卷含解析,共18页。试卷主要包含了计算的结果为等内容,欢迎下载使用。
【全国百强校首发】四川省阆中学中学2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份【全国百强校首发】四川省阆中学中学2021-2022学年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列分式是最简分式的是等内容,欢迎下载使用。