第5讲角含半角模型(原卷+解析)学案
展开
中考数学几何模型5:角含半角模型TH
名师点睛 拨开云雾 开门见山
角含半角模型,顾名思义即一个角包含着它的一半大小的角。它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。
类型一:等腰直角三角形角含半角模型
(1)如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD2+CE2=DE2.
图示(1) 作法1:将△ABD旋转90° 作法2:分别翻折△ABD,△ACE
(2)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠DAE=45°,则:BD2+CE2=DE2.
图示(2)
(3)如图,将等腰直角三角形变成任意等腰三角形时,亦可以进行两种方法的操作处理..
任意等腰三角形
类型二:正方形中角含半角模型
(1)如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF于点G,则:EF=BE+DF,AG=AD.
图示(1) 作法:将△ABE绕点A逆时针旋转90°
(2)如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连接EF,则:EF=DF-BE.
图示(2) 作法:将△ABE绕点A逆时针旋转90°
(3)如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD中,AB=AD,∠BAD+∠C=180°,点E,F分别在边BC,CD上,∠EAF=∠BAD,连接EF,则:EF=BE+DF.
图示(3) 作法:将△ABE绕点A逆时针旋转∠BAD的大小
典题探究 启迪思维 探究重点
例题1. 如图,正方形ABCD的边长为4,点E,F分别在AB,AD上,若CE=5,且∠ECF=45°,则CF的长为 4 .
【解答】解:如图,延长FD到G,使DG=BE;连接CG、EF;
∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),
∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,
在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,
∵CE=5,CB=4,∴BE=3,∴AE=1,
设AF=x,则DF=4﹣x,GF=1+(4﹣x)=5﹣x,∴EF==,
∴(5﹣x)2=1+x2,∴x=,即AF=,∴DF=4﹣=,
∴CF===4,
故答案为:4.
变式练习>>>
1.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为( )
A. B. C. D.
【解答】解法一:作AF⊥CB交CB的延长线于F,在CF的延长线上取一点G,使得FG=DE.
∵AD∥BC,
∴∠BCD+∠ADC=180°,
∴∠ADC=∠BCD=∠AFC=90°,
∴四边形ADCF是矩形,
∵∠CAD=45°,
∴AD=CD,
∴四边形ADCF是正方形,
∴AF=AD,∠AFG=∠ADF=90°,
∴△AFG≌△ADE,
∴AG=AE,∠FAG=∠DAE,
∴∠FAG+∠FAB=∠EAD+∠FAB=45°=∠BAE,
∴△BAE≌△BAG,
∴BE=BG=BF+GF=BF+DE,
设BC=a,则AB=4+a,BF=4﹣a,
在Rt△ABF中,42+(4﹣a)2=(4+a)2,解得a=1,
∴BC=1,BF=3,设BE=b,则DE=b﹣3,CE=4﹣(b﹣3)=7﹣b.
在Rt△BCE中,12+(7﹣b)2=b2,解得b=,
∴BG=BE=,
∴S△ABE=S△ABG=××4=.
例题2. 在正方形ABCD中,连接BD.
(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.
(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.
①依题意补全图1;
②用等式表示线段BM、DN和MN之间的数量关系,并证明.
(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)
【解答】解:(1)∵BD是正方形ABCD的对角线,
∴∠ABD=∠ADB=45°,
∵AE⊥BD,
∴∠ABE=∠BAE=45°,
(2)①依题意补全图形,如图1所示,
②BM、DN和MN之间的数量关系是BM2+MD2=MN2,
将△AND绕点D顺时针旋转90°,得到△AFB,
∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,
∵在正方形ABCD中,AE⊥BD,
∴∠ADB=∠ABD=45°,
∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,
在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,
∵旋转△ANE得到AB1E1,
∴∠E1AB1=45°,
∴∠BAB1+∠DAN=90°﹣45°=45°,
∵∠BAF=DAN,
∴∠BAB1+∠BAF=45°,
∴∠FAM=45°,
∴∠FAM=∠E1AB1,
∵AM=AM,AF=AN,
∴△AFM≌△ANM,
∴FM=MN,
∵FB2+BM2=FM2,
∴DN2+BM2=MN2,
变式练习>>>
2. (1)【探索发现】
如图1,正方形ABCD中,点M、N分别是边BC、CD上的点,∠MAN=45°,若将△DAN绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为6,则正方形ABCD的边长为 3 .
(2)【类比延伸】
如图(2),四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M、N分别在边BC、CD上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.
(3)【拓展应用】
如图3,四边形ABCD中,AB=AD=10,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,△ABM是等边三角形,AM⊥AD,DN=5(﹣1),请直接写出MN的长.
【解答】解:(1)如图1中,
∵△MAN≌△MAG,∴MN=GM,
∵DN=BG,GM=BG+BM,
∴MN=BM+DN,
∵△CMN的周长为:MN+CM+CN=6,
∴BM+CM+CN+DN=6,
∴BC+CD=6,
∴BC=CD=3,
故答案为3.
(2)如图2中,结论:MN=NM+DN.
延长CB至E,使BE=DN,连接AE,
∵∠ABC+∠D=180°,∠ABC+∠ABE=180°,
∴∠D=∠ABE,
在△ABE和△ADN中,,
∴△ABE≌△ADN,
∴AN=AE,∠DAN=∠BAE,
∵∠BAD=2∠MAN,
∴∠DAN+∠BAM=∠MAN,
∴∠MAN=∠EAM,
在△MAN和△MAE中,,
∴△MAN≌△MAE,
∴MN=EM=BE+BM=BM+DN,即MN=BM+DN;
(3)解:如图3,把△ABM绕点A逆时针旋转150°至△ADG,连接AN.作NH⊥AD于H,在AH上取一点K,使得∠NKH=30°
在Rt△DHN中,∵∠NDH=60°DN=5(﹣1),
∴DH=DN=,HN=DH=,
在Rt△KNH中,KN=2HN=15﹣5,HK=HN=,
∴AK=AH﹣HK=15﹣5,
∴AK=KN,
∴∠KAN=∠KNA,
∵∠NKH=∠KAN+∠KNA,
∴∠NAK=15°,
∴∠MAN=75°=∠BAD,
由(2)得,MN=BM+DN=10+5(﹣1)=5+5.
例题3. 如图,在四边形ABCD中,AB=BC,∠A=∠C=90°,∠B=135°,K,N分别是AB,BC上的点,若△BKN的周长为AB的2倍,求∠KDN的度数.
变式练习>>>
3. 如图,正方形被两条与边平行的线段EF,GH分割成四个小矩形,P是EF与GH的交点,若矩形PFCH的面积恰是矩形AGPE面积的2倍,试确定∠HAF的大小并证明你的结论.
例题4. 如图,在四边形ABCD中,AB=AD,BC=CD,∠ABC=∠ADC=90°,∠MAN=∠BAD.
(1)如图1,将∠MAN绕着A点旋转,它的两边分别交边BC、CD于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明;
(2)如图2,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?并证明你的结论;
(3)如图3,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的反向延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明.
【解答】解:(1)证明:延长MB到G,使BG=DN,连接AG.
∵∠ABG=∠ABC=∠ADC=90°,AB=AD,
∴△ABG≌△ADN.
∴AG=AN,BG=DN,∠1=∠4.
∴∠1+∠2=∠4+∠2=∠MAN=∠BAD.
∴∠GAM=∠MAN.
又AM=AM,
∴△AMG≌△AMN.
∴MG=MN.
∵MG=BM+BG.
∴MN=BM+DN.
(2)MN=BM﹣DN.
证明:在BM上截取BG,使BG=DN,连接AG.
∵∠ABC=∠ADC=90°,AD=AB,
∴△ADN≌△ABG,
∴AN=AG,∠NAD=∠GAB,
∴∠MAN=∠NAD+∠BAM=∠DAB,
∴∠MAG=∠BAD,
∴∠MAN=∠MAG,
∴△MAN≌△MAG,
∴MN=MG,
∴MN=BM﹣DN.
(3)MN=DN﹣BM.
达标检测 领悟提升 强化落实
1. 请阅读下列材料:
问题:正方形ABCD中,M,N分别是直线CB、DC上的动点,∠MAN=45°,当∠MAN交边CB、DC于点M、N(如图①)时,线段BM、DN和MN之间有怎样的数量关系?
小聪同学的思路是:延长CB至E使BE=DN,并连接AE,构造全等三角形经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:
(1)直接写出上面问题中,线段BM,DN和MN之间的数量关系;
(2)当∠MAN分别交边CB,DC的延长线于点M/N时(如图②),线段BM,DN和MN之间的又有怎样的数量关系?请写出你的猜想,并加以证明;
(3)在图①中,若正方形的边长为16cm,DN=4cm,请利用(1)中的结论,试求MN的长.
【解答】解:(1)BM+DN=MN;
(2)DN﹣BM=MN.
理由如下:
如图,在DC上截取DF=BM,连接AF.
∵AB=AD,∠ABM=∠ADF=90°,
∴△ABM≌△ADF (SAS)
∴AM=AF,∠MAB=∠FAD.
∴∠MAB+∠BAF=∠FAD+∠BAF=90°,
即∠MAF=∠BAD=90°.
又∠MAN=45°,
∴∠NAF=∠MAN=45°.
∵AN=AN,
∴△MAN≌△FAN.
∴MN=FN,
即 MN=DN﹣DF=DN﹣BM;
(3)∵正方形的边长为16,DN=4,
∴CN=12.
根据(1)可知,BM+DN=MN,
设 MN=x,则 BM=x﹣4,
∴CM=16﹣(x﹣4)=20﹣x.
在Rt△CMN中,
∵MN2=CM2+CN2,
∴x2=(20﹣x)2+122.
解得 x=13.6.
∴MN=13.6cm.
2. (1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.试探究图中线段BE、EF、FD之间的数量关系.
(1)小王同学探究此问题的方法是:延长EB到点G,使BG=DF,连结AG,先证明△ABG≌△ADF,再证明△AEG≌△AEF,可得出结论,他的结论应是 EF=BE+FD .
(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.
(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.
【解答】解:(1)由△ABG≌△ADF,△AEG≌△AEF可知,BG=DF,EF=EG=BG+EF=DF+EF,
故答案为EF=BE+FD.
(2)(1)中的结论EF=BE+FD仍然成立.
理由:延长EB到点G,使BG=DF,连结AG.
∵∠ABD+∠D=180°,∠ABD+∠ABG=180°,
∴∠ABG=∠D,
∴AB=AD,BG=DF,
∴△ABG≌△ADF,
∴∠BAG=∠DAF,AG=AF,
∵∠EAF=∠BAD,
∴∠BAE+∠DAF=∠BAD=∠BAE+∠BAG,
∴∠EAG=∠EAF,
∵AE=AE,AG=AF,
∴△EAG≌△EAF,
∴EG=EF,
∵EG=BG+BE=DF+BE,
∴EF=BE+DF.
3. 小曼和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:“已知正方形ABCD,点E、F、G、H分别在边AB、BC、CD、DA上,若EG⊥FH,则EG=FH.”为了解决这个问题,经过思考,大家给出了以下两个方案:
方案一:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;
方案二:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N.…
(1)对小曼遇到的问题,请在甲、乙两个方案中任选一个加以证明(如图(1)).
(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图(2)),是探究EG、FH之间有怎样的数量关系,并证明你的结论.
(3)如果把条件中的“EG⊥FH”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图(3)),试求EG的长度.
【解答】解:(1)证明:过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N,
∴AM=HF,AN=BC,
在正方形ABCD中,AB=AD,∠ABM=∠BAD=∠ADN=90°
∵EG⊥FH,
∴∠NAM=90°,
∴∠BAM=∠DAN,
在△ABM和△ADN中,∠BAM=∠DAN,AB=AD,∠ABM=∠ADN
∴△ABM≌△ADN
∴AM=AN,即EG=FH
(2)结论:EG:FH=3:2
证明:过点A作AM∥HF交BC于点M,作AN∥EC交CD的延长线于点N,
∴AM=HF,AN=EC,在长方形ABCD中,BC=AD,∠ABM=∠BAD=∠ADN=90°,
∵EG⊥FH,
∴∠NAM=90°,
∴∠BAM=∠DAN.
∴△ABM∽△ADN.
,
∵AB=2,BC=AD=3,
∴.
(3)解:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,
∵.
∴在Rt△ABM中,BM=.
将△AND绕点A顺时针旋转90°到△APB.
∵EG与FH的夹角为45°,
∴∠MAN=45°,
∴∠DAN+∠MAB=45°,即∠PAM=∠MAN=45°,
从而△APM≌△ANM,
∴PM=NM.
设DN=x,则NC=1﹣x,MN=PM=.
在Rt△CMN中,解得.
∴.
4. 已知:如图,正方形ABCD的边长为a,BM,DN分别平分正方形的两个外角,且满足∠MAN=45°,连接MC,NC,MN.
(1)填空:与△ABM相似的三角形是_________,BM•DN=_________;(用含a的代数式表示)
(2)求∠MCN的度数;
(3)猜想线段BM,DN和MN之间的等量关系并证明你的结论.
第12讲主从联动模型(原卷+解析)学案: 这是一份第12讲主从联动模型(原卷+解析)学案,文件包含第12讲主从联动模型解析版docx、第12讲主从联动模型原卷版docx等2份学案配套教学资源,其中学案共46页, 欢迎下载使用。
第10讲胡不归最值模型(原卷+解析)学案: 这是一份第10讲胡不归最值模型(原卷+解析)学案,文件包含第10讲胡不归最值模型解析版docx、第10讲胡不归最值模型原卷版docx等2份学案配套教学资源,其中学案共38页, 欢迎下载使用。
第7讲轴对称最值模型(原卷+解析)学案: 这是一份第7讲轴对称最值模型(原卷+解析)学案,文件包含第7讲轴对称最值模型解析版docx、第7讲轴对称最值模型原卷版docx等2份学案配套教学资源,其中学案共38页, 欢迎下载使用。