所属成套资源:中考第二轮复习专题
专题15二次函数及其应用(基础巩固练习) 练习版
展开
这是一份专题15二次函数及其应用(基础巩固练习) 练习版,共14页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2021年中考数学 专题15 二次函数及其应用(基础巩固练习,共50个小题)一、选择题(共25小题):1.(2020秋•闵行区期末)下列函数中,是二次函数的是( )A.y3x B.y=﹣(x﹣1)2+x2 C.y=11x2+29x D.y=ax2+bx+c2.(2020秋•郫都区期末)若y=(a﹣2)x2﹣3x+4是二次函数,则a的取值范围是( )A.a≠2 B.a>0 C.a>2 D.a≠03.(2020•西宁)函数y=ax2+1和y=ax+a(a为常数,且a≠0),在同一平面直角坐标系中的大致图象可能是( )4.(2020•陕西)在同一平面直角坐标系中,若抛物线y=mx2+2x﹣n与y=﹣6x2﹣2x+m﹣n关于x轴对称,则m,n的值为( )A.m=﹣6,n=﹣3 B.m=﹣6,n=3C.m=6,n=﹣3 D.m=6,n=3
5.(2020•葫芦岛)如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:①abc>0,②2a+b=0,③4a+b2<4ac,④3a+c<0.正确的个数是( ) A.1 B.2 C.3 D.46.(2020•镇江)点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于( )A. B.4 C. D.7.(2020•呼和浩特)已知二次函数y=(a﹣2)x2﹣(a+2)x+1,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,则关于x的一元二次方程(a﹣2)x2﹣(a+2)x+1=0的两根之积为( )A.0 B.﹣1 C. D.8.(2020•宿迁)将二次函数y=(x﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为( )A.y=(x+2)2﹣2 B.y=(x﹣4)2+2 C.y=(x﹣1)2﹣1 D.y=(x﹣1)2+59.(2020•广东)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为( )A.y=x2+2 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=(x﹣1)2+310.(2020•温州)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则( )A.y3<y2<y1 B.y3<y1<y2 C.y2<y3<y1 D.y1<y3<y211.2020•杭州)设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,( )A.若h=4,则a<0 B.若h=5,则a>0 C.若h=6,则a<0 D.若h=7,则a>012.(2018•山西)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为( )A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣2513.(2020•绵阳)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A.4米 B.5米 C.2米 D.7米 14.(2020•山西)竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=﹣5t2+v0t+h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为( )A.23.5m B.22.5m C.21.5m D.20.5m15.(2020秋•齐河县期末)今年由于受新型冠状病毒的影响,一次性医用口罩的销量剧增.某药店一月份销售量是5000枚,二、三两个月销售量连续增长.若月平均增长率为x,则该药店三月份销售口罩枚数y(枚)与x的函数关系式是( )A.y=5000(1+x) B.y=5000(1+x)2 C.y=5000(1+x2) D.y=5000(1+2x)16.(2020秋•龙沙区期末)为测量某地温度变化情况,记录了一段时间的温度.一段时间内,温度y与时间t的函数关系满足y=﹣t2+12t+2,当4≤t≤8时,该地区的最高温度是( )A.38℃ B.37℃ C.36℃ D.34℃17.(2020秋•光明区期末)如图,抛物线与x轴交于A(﹣2,0),B(4,0)两点,点P从点A出发,沿线段AB向点B匀速运动,到达点B停止,PQ⊥x轴,交抛物线于点Q(m,n),设点P的运动时间为t秒,当t=3和t=9时,n的值相等.下列结论:①t=6时,n的值最大; ②t=10时,n=0;③当t=5和t=7时,n的值不一定相等; ④t=4时,m=0.其中正确的是( )A.①④ B.②④ C.①③ D.②③18.(2020秋•武侯区期末)关于x的一元二次方程x2+4x+4m=0有两个相等的实数根,则二次函数y=x2+4x+4m的图象与x轴的交点情况为( )A.没有交点 B.有一个交点 C.有两个交点 D.不能确定 19.(2020秋•昆明期末)抛物线y=ax2+bx+c(a≠0)与x轴的交点是(1,0),(﹣3,0),则这条抛物线的对称轴是( )A.x=1 B.x=﹣1 C.x=2 D.x=﹣320.(2020•阜新)已知二次函数y=﹣x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是( )A.图象的开口向上 B.图象的顶点坐标是(1,3) C.当x<1时,y随x的增大而增大 D.图象与x轴有唯一交点21.(2020•娄底)二次函数y=(x﹣a)(x﹣b)﹣2(a<b)与x轴的两个交点的横坐标分别为m和n,且m<n,下列结论正确的是( )A.m<a<n<b B.a<m<b<n C.m<a<b<n D.a<m<n<b22.(2020•大连)抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是( ) A.(,0) B.(3,0) C.(,0) D.(2,0)23.(2020•昆明)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是( ) A.ab<0 B.一元二次方程ax2+bx+c=0的正实数根在2和3之间 C.a D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t时,y1<y224.(2020•宜宾)函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.以下结论正确的是( )①abc>0;②函数y=ax2+bx+c(a≠0)在x=1和x=﹣2处的函数值相等;③函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象总有两个不同交点;④函数y=ax2+bx+c(a≠0)在﹣3≤x≤3内既有最大值又有最小值.A.①③ B.①②③ C.①④ D.②③④25.(2020•随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴的正半轴交于点C,顶点为D,则下列结论:①2a+b=0; ②2c<3b;③当△ABC是等腰三角形时,a的值有2个; ④当△BCD是直角三角形时,a.其中正确的有( )A.1个 B.2个 C.3个 D.4个二、填空题(共18小题):26.(2020•凉山州一模)若y=(m2+m)xm2﹣2m﹣1﹣x+3是关于x的二次函数,则m= . 27.(2020•哈尔滨)抛物线y=3(x﹣1)2+8的顶点坐标为 . 28.(2020•兰州)点A(﹣4,3),B(0,k)在二次函数y=﹣(x+2)2+h的图象上,则k= . 29.(2020•德阳)若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是 . 30.(2020•西藏)当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,则m= . 31.(2020秋•伊通县期末)二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则k= . 32.(2020•牡丹江)将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a﹣4b﹣11的值是 . 33.(2020•长春)如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CDAB,则k的值为 .34.(2020•益阳)某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是 元.35.(2020•湖北)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为 元. 36.(2020•连云港)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为 min. 37.(2020秋•澄海区期末)汽车刹车后行驶的距离s(米)与行驶时间t(秒)的函数关系是s=18t﹣6t2,汽车从刹车到停下来所用时间是 秒. 38.(2020•朝阳)抛物线y=(k﹣1)x2﹣x+1与x轴有交点,则k的取值范围是 . 39.(2020•宁夏)若二次函数y=﹣x2+2x+k的图象与x轴有两个交点,则k的取值范围是 . 40.(2020•青岛)抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是 . 41.(2019•贵港)我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是 . 42.(2018•河池)如图,抛物线y=x2+bx+c与x轴只有一个交点,与x轴平行的直线l交抛物线于A、B,交y轴于M,若AB=6,则OM的长为 . 43.(2020•荆门)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,顶点为C,对称轴为直线x=1,给出下列结论:①abc<0;②若点C的坐标为(1,2),则△ABC的面积可以等于2;③M(x1,y1),N(x2,y2)是抛物线上两点(x1<x2),若x1+x2>2,则y1<y2; ④若抛物线经过点(3,﹣1),则方程ax2+bx+c+1=0的两根为﹣1,3.其中正确结论的序号为 .三、解答题(共7小题):44.(2020•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围. 45.(2020•安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值. 46.(2020•昆明)如图,两条抛物线y1=﹣x2+4,y2x2+bx+c相交于A,B两点,点A在x轴负半轴上,且为抛物线y2的最高点.(1)求抛物线y2的解析式和点B的坐标;(2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD. 47.(2020•衡阳)在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(﹣1,0),(2,0).(1)求这个二次函数的表达式;(2)求当﹣2≤x≤1时,y的最大值与最小值的差;(3)一次函数y=(2﹣m)x+2﹣m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围. 48.(2020•西宁)如图1,一次函数的图象与两坐标轴分别交于A,B两点,且B点坐标为(0,4),以点A为顶点的抛物线解析式为y=﹣(x+2)2.(1)求一次函数的解析式;(2)如图2,将抛物线的顶点沿线段AB平移,此时抛物线顶点记为C,与y轴交点记为D,当点C的横坐标为﹣1时,求抛物线的解析式及D点的坐标;(3)在(2)的条件下,线段AB上是否存在点P,使以点B,D,P为顶点的三角形与△AOB相似,若存在,求出所有满足条件的P点坐标;若不存在,请说明理由. 49.(2020•广安)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,过点A的直线l交抛物线于点C(2,m).(1)求抛物线的解析式.(2)点P是线段AC上一个动点,过点P作x轴的垂线交抛物线于点E,求线段PE最大时点P的坐标.(3)点F是抛物线上的动点,在x轴上是否存在点D,使得以点A,C,D,F为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的点D的坐标;如果不存在,请说明理由. 50.(2020•苏州)如图,二次函数y=x2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,﹣3).(1)求b的值;(2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形.过点P、Q分别作x轴的垂线,与抛物线交于点P'(x1,y1)、Q'(x2,y2).若|y1﹣y2|=2,求x1、x2的值.
相关试卷
这是一份专题13一次函数及其应用(基础巩固练习)解析版,共41页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份专题15二次函数及其应用(基础巩固练习) 解析版,共40页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份专题13一次函数及其应用(基础巩固练习)练习版,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。