2022年陕西省西安市曲江第一中学九年级下学期 第三次数学模拟考试试卷(word版无答案)
展开
这是一份2022年陕西省西安市曲江第一中学九年级下学期 第三次数学模拟考试试卷(word版无答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年陕西省西安市雁塔区曲江一中中考数学三模试卷一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣20的倒数是( )A.﹣20 B.20 C. D.﹣2.如图,是一个正方体的展开图,把展开图折叠成正方体后,与“数”这个汉字相对的面上的汉字是()A.我 B.很 C.喜 D.欢3.下列运算正确的是( )A.3a+2a=5a2 B.﹣8a2÷4a=2a C.4a2•3a3=12a6 D.(﹣2a2)3=﹣8a64.如图,AB∥CD,EF⊥BD,垂足为点F,∠ABG=40°,则∠CEF等于()A.110° B.120° C.130° D.140°5.如图,在Rt△ABC中,∠C=90°,线段AB的垂直平分线交BC于点D,交AB于点E.若AC=6,BC=8,则AD的长为()A.5 B.7 C. D.36.将一次函数y=kx+2的图象向下平移3个单位长度后经过点(﹣2,1),则k的值为( )A.﹣1 B.2 C.1 D.﹣27.如图,在菱形ABCD中,点E、F分别是边AB、BC的中点,连接DE、DF、EF.若菱形ABCD的面积为8,则△DEF的面积为()A.2.5 B.3 C.3.5 D.48.二次函数y=x2+bx的对称轴为x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是( )A.t<3 B.t<8 C.﹣1≤t<3 D.﹣1≤t<8二、填空题(本大题共5小题,每小题3分,共15分)9.因式分解:2a3﹣8ab2= .10.如图,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠FAI的度数为: .11.公元3世纪,我国古代数学家刘徽就能利用近似公式得到无理数的近似值,例如可将化为,再由近似公式得到,若利用此公式计算的近似值时,r取正整数,且a取尽可能大的正整数,则≈ .12.已知点A(a,y1),B(a+1,y2)在反比例函数y=(m是常数)的图象上,且且y1>y2,则a的取值范围是 .13.如图,△ABC中,∠ACB=90°,AC=6,BC=8,P为△ABC外以AB为直径的半圆上一动点,当点P从点A运动到点B时,线段CP的中点Q运动的路线长为 三、解答题(共13小题,计81分。解答应写出过程)14.计算:.15.解不等式组:.16.分式化简:.17.如图,点A、B是直线MN外同侧的两点,请用尺规在直线MN上求作一点P,使得∠APM=∠BPN.(保留作图痕迹,不写作法)18.如图,A、C、D三点共线,△ABC和△CDE落在AD的同侧,AC=CE,∠B=∠BCE=∠CDE.求证:AB=CD.19.如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为60m2,求道路的宽.20.2022年北京一张家口冬季奥运会第24届冬季奥林匹克运动会,简称“北京张家口冬奥会”,于2022年02月04日至2022年02月20日在中华人民共和国北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会,以下是2022年北京张家口冬奥运会会做、冬残奥会会徽、冬奥会吉祥物及冬残奥会吉祥物的卡片,四张卡片分别用编号A、B、C、D来表示,这4张卡片背面完全相同.现将这四张卡片背面朝上,洗匀放好(1)从中任意抽取一个张卡片,恰好是“冬梦”的概率为 (2)将冬梦和冰墩墩的组合或飞跃和雪容融的组合称为“配套“、小彩和小云分别从中随机抽取一张卡片,请你用列表或画树状图的方法求她们抽到的两张卡片恰好配套的概率.(这四张卡片分别用它们的编号A、B、C、D表示)21.如图,甲、乙两座建筑物的水平距离BC为80m,从甲的顶部A处测得乙的顶部D处的俯角为50°,测得底部C处的俯角为62°求乙建筑物的高度DC. (结果取整数:参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)22.为积极响应“弘杨传统文化”的号召,曲江一中组织初一年级1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的效果,学校团委在活动启动之初,随机抽取40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图如图所示大赛结束后一个月,再次抽查这部分学生“一同诗词诵背数量”,绘制成统计表如表:请根据调查的信息分析: 一周诗词诵背数量3首4首5首6首7首8首人数13561015(1)活动启动之初学生“一周诗词诵背数量”的众数为 ,中位数为 ;(2)求在大赛结束后一个月,抽查的这部分学生一周诗词背诵数量的平均数;(3)估计大赛后一个月初一学生一周诗词诵背6首及6首以上的人数.23.5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:价格型号进价(元/部)售价(元/部)A30003400B35004000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共20部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?24.如图,在Rt△ABC中,∠ACB=90°,延长CA到点D,以AD为直径作⊙O,交BA的延长线于点E,延长BC到点F,使BF=EF.(1)求证:EF是⊙O的切线;(2)若OC=9,AC=4,AE=8,求BF的长. 25.如图,抛物线与x轴交于A和B两点(点B位于点A右侧),与y轴交于点C,对称轴是直线x=2,且OA=1,OC=3,连接AC,BC.(1)求此抛物线的函数解析式:(2)设抛物线的顶点为点P,请在x轴.上找到一个点D,使以点P、B、D为顶点的三角形与△MBC相似?26.问题提出(1)如图1,已知△ABC是边长为2的等边三角形,则△ABC的面积为 问题探究(2)如图2,在△ABC中,已知∠BAC=120°,BC=6,求△ABC的最大面积.问题解决(3)如图3,某校学生礼堂的平面示意图为矩形ABCD,其宽AB=20米,长BC=24米,为了能够监控到礼堂内部情况,现需要在礼堂最尾端墙面CD上安装一台摄像头M进行观测,并且要求能观测到礼堂前端墙面AB区域,同时为了观测效果达到最佳,还需要从点M出发的观测角∠AMB=45°,请你通过所学的知识进行分析,在墙面CD区域上是否存在点M满足要求?若存在,求出MC的长度;若不存在,请说明理由.
相关试卷
这是一份2024年陕西省西安市曲江第一中学九年级中考第九次模拟考试数学试题(pdf版,无答案),共7页。
这是一份陕西省 西安市曲江第一中学九年级中考数学第八次模拟考试试题,共6页。
这是一份13,2024年陕西省西安市曲江第一中学中考模拟数学试题(无答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。