终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    (全国通用)2022年中考数学一轮复习高频考点精讲精练 专题06 分式(原卷版+解析版)学案

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      (全国通用)2022年中考数学一轮复习高频考点精讲精练 专题06 分式(原卷版).docx
    • 解析
      (全国通用)2022年中考数学一轮复习高频考点精讲精练 专题06 分式(解析版).docx
    (全国通用)2022年中考数学一轮复习高频考点精讲精练 专题06 分式(原卷版)第1页
    (全国通用)2022年中考数学一轮复习高频考点精讲精练 专题06 分式(原卷版)第2页
    (全国通用)2022年中考数学一轮复习高频考点精讲精练 专题06 分式(解析版)第1页
    (全国通用)2022年中考数学一轮复习高频考点精讲精练 专题06 分式(解析版)第2页
    (全国通用)2022年中考数学一轮复习高频考点精讲精练 专题06 分式(解析版)第3页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (全国通用)2022年中考数学一轮复习高频考点精讲精练 专题06 分式(原卷版+解析版)学案

    展开

    这是一份(全国通用)2022年中考数学一轮复习高频考点精讲精练 专题06 分式(原卷版+解析版)学案,文件包含全国通用2022年中考数学一轮复习高频考点精讲精练专题06分式解析版docx、全国通用2022年中考数学一轮复习高频考点精讲精练专题06分式原卷版docx等2份学案配套教学资源,其中学案共11页, 欢迎下载使用。
    【高频考点精讲】
    1.分式有意义的条件
    (1)分式有意义的条件是分母不等于零.
    (2)分式无意义的条件是分母等于零.
    (3)分式的值为正数的条件是分子、分母同号.
    (4)分式的值为负数的条件是分子、分母异号.
    2.分式的化简求值
    (1)化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”.
    (2)代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.
    【热点题型精练】
    1.(2021•柳州中考)若分式在实数范围内有意义,则x的取值范围是( )
    A.x≠﹣5B.x≠0C.x≠5D.x>﹣5
    解:根据分式成立的条件,可得:x+5≠0,
    ∴x≠﹣5,
    答案:A.
    2.(2021•南宁中考)若分式在实数范围内有意义,则实数x的取值范围是( )
    A.x≠1B.x≠﹣1C.x≥1D.x>﹣1
    解:若分式在实数范围内有意义,则x+1≠0,
    解得:x≠﹣1.
    答案:B.
    3.(2021•成都中考)若分式的值等于0,则x的值为( )
    A.﹣1B.0C.1D.±1
    解:由题意得:|x|﹣1=0,且x﹣1≠0,
    解得:x=﹣1,
    答案:A.
    4.(2021•北京模拟)分式的值为0,则x的值是 1 .
    解:∵分式的值为0,
    ∴x﹣1=0且x≠0,
    ∴x=1.
    答案:1.
    5.(2021•杭州模拟)若把x,y的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )
    A.B.C.D.
    解:A、=2×,分式的值不能保持不变,故此选项不符合题意;
    B、=,分式的值保持不变,故此选项符合题意;
    C、=,分式的值不能保持不变,故此选项不符合题意;
    D、=,分式的值不能保持不变,故此选项不符合题意.
    答案:B.
    6.(2021•苏州模拟)化简= .
    解:


    答案:.
    7.(2021•长沙中考)定义一种新的运算:如果a≠0.则有a▲b=a﹣2+ab+|﹣b|,那么(﹣)▲2的值是( )
    A.﹣3B.5C.﹣D.
    解:根据题中的新定义得:
    (﹣)▲2
    =|﹣2|
    =4﹣1+2
    =5.
    答案:B.
    8.(2021•株洲模拟)计算:()﹣1= 4 .
    解:()﹣1==4,
    答案:4.
    9.(2021•内蒙古中考)分式与的最简公分母是 x(x﹣2) ,方程﹣=1的解是 x=﹣4 .
    解:∵x2﹣2x=x(x﹣2),
    ∴分式与的最简公分母是x(x﹣2),
    方程,
    去分母得:2x2﹣8=x(x﹣2),
    去括号得:2x2﹣8=x2﹣2x,
    移项合并得:x2+2x﹣8=0,变形得:(x﹣2)(x+4)=0,
    解得:x=2或﹣4,
    ∵当x=2时,x(x﹣2)=0,当x=﹣4时,x(x﹣2)≠0,
    ∴x=2是增根,
    ∴方程的解为:x=﹣4.
    答案:x(x﹣2),x=﹣4.
    10.(2021•绵阳模拟)若+=2,则分式的值为 ﹣4 .
    解:+=2,可得m+n=2mn,


    =﹣4;
    答案:﹣4;
    11.(2021•江苏中考)已知两个不等于0的实数a、b满足a+b=0,则+等于( )
    A.﹣2B.﹣1C.1D.2
    解:+


    =,
    ∵两个不等于0的实数a、b满足a+b=0,
    ∴ab≠0,
    当a+b=0时,原式==﹣2,
    答案:A.
    12.(2021•四川中考)若=3,则+= .
    解:∵,
    ∴n=2m,
    ∴+=+=+4=,
    答案:.
    二、分式混合运算
    【高频考点精讲】
    1.运算顺序:分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的;
    2.化简结果:运算的结果要化成最简分式或整式.分子、分母中有公因式的要进行约分化为最简分式或整式;
    3.运算律的应用:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程。
    【热点题型精练】
    13.(2021•江西中考)计算的结果为( )
    A.1B.﹣1C.D.
    解:原式=

    =1,
    答案:A.
    14.(2021•四川中考)化简:﹣= .
    解:




    =.
    答案:.
    15.(2021•江西模拟)计算÷(﹣)的结果为( )
    A.aB.﹣aC.D.
    解:原式=•(﹣a2)=﹣a,
    答案:B.
    16.(2020•江苏中考)计算或化简:
    (1)2sin60°+()﹣1﹣.
    (2)÷.
    解:(1)原式=2×+2﹣2
    =+2﹣2
    =2﹣;
    (2)原式=•
    =1.
    17.(2021•湖南中考)下列计算结果正确的是( )
    A.(a3)2=a5B.(﹣bc)4÷(﹣bc)2=﹣b2c2
    C.a÷b•=D.1+=
    解:A、(a3)2=a6,故此选项不符合题意;
    B、(﹣bc)4÷(﹣bc)2=(﹣bc)2=b2c2,故此选项不符合题意;
    C、a÷b•,正确,故此选项符合题意;
    D、1+,故此选项不符合题意;
    答案:C.
    18.(2021•辽宁中考)化简:()•(x+4)= 1 .
    解:()•(x+4)
    =•(x+4)
    =•(x+4)
    =1,
    答案:1.
    19.(2021•四川中考)(1)计算:(π﹣3)0﹣+4sin60°﹣()﹣1;
    (2)化简:(+1)÷.
    解:(1)原式=1﹣2+4×﹣2
    =1﹣2+2﹣2
    =﹣1;
    (2)原式=(+)•
    =(+)•
    =•
    =.

    相关学案

    (全国通用)2022年中考数学一轮复习高频考点精讲精练 专题11 分式方程(原卷版+解析版)学案:

    这是一份(全国通用)2022年中考数学一轮复习高频考点精讲精练 专题11 分式方程(原卷版+解析版)学案,文件包含全国通用2022年中考数学一轮复习高频考点精讲精练专题11分式方程解析版docx、全国通用2022年中考数学一轮复习高频考点精讲精练专题11分式方程原卷版docx等2份学案配套教学资源,其中学案共15页, 欢迎下载使用。

    (全国通用)2022年中考数学一轮复习高频考点精讲精练 专题04 整式运算(原卷版+解析版)学案:

    这是一份(全国通用)2022年中考数学一轮复习高频考点精讲精练 专题04 整式运算(原卷版+解析版)学案,文件包含全国通用2022年中考数学一轮复习高频考点精讲精练专题04整式运算解析版docx、全国通用2022年中考数学一轮复习高频考点精讲精练专题04整式运算原卷版docx等2份学案配套教学资源,其中学案共15页, 欢迎下载使用。

    (全国通用)2022年中考数学一轮复习高频考点精讲精练 专题02 实数运算(原卷版+解析版)学案:

    这是一份(全国通用)2022年中考数学一轮复习高频考点精讲精练 专题02 实数运算(原卷版+解析版)学案,文件包含全国通用2022年中考数学一轮复习高频考点精讲精练专题02实数运算解析版docx、全国通用2022年中考数学一轮复习高频考点精讲精练专题02实数运算原卷版docx等2份学案配套教学资源,其中学案共9页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map