所属成套资源:高考数学(理数)一轮复习课时作业(原卷版)
高考数学(理数)一轮复习课时作业48《利用向量求空间角》(原卷版)
展开
这是一份高考数学(理数)一轮复习课时作业48《利用向量求空间角》(原卷版),共5页。
课时作业48 利用向量求空间角1.在正方体ABCD-A1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为( )A. B.C. D.2.设正方体ABCD-A1B1C1D1的棱长为2,则点D1到平面A1BD的距离是( )A. B.C. D.3.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A. B.C. D.4.已知三棱锥P-ABC的所有顶点都在表面积为16π的球O的球面上,AC为球O的直径.当三棱锥P-ABC的体积最大时,二面角P-AB-C的大小为θ,则sinθ等于( )A. B.C. D.5.如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是正方形A1B1C1D1和正方形ADD1A1的中心,则EF和CD所成的角的大小是 .6.如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点.设异面直线EM与AF所成的角为θ,则cosθ的最大值为 .7.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积. 8.在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EB=,EF=1,BC=,且M是BD的中点.(1)求证:EM∥平面ADF;(2)求二面角A-FD-B的余弦值的大小. 9.如图所示,在四棱锥P-ABCD中,PA⊥平面ABCD,△DAB≌△DCB,E为线段BD上的一点,且EB=ED=EC=BC,连接CE并延长交AD于F.(1)若G为PD的中点,求证:平面PAD⊥平面CGF;(2)若BC=2,PA=3,求平面BCP与平面DCP所成锐二面角的余弦值. 10.如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值. 11.如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD,E为棱AD的中点,异面直线PA与CD所成的角为90°.(1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值. 12.如图,在等腰梯形ABCD中,∠ABC=60°,CD=2,AB=4,点E为AB的中点,现将该梯形中的三角形EBC沿线段EC折起,形成四棱锥B-AECD.(1)在四棱锥B-AECD中,求证:AD⊥BD;(2)若平面BEC与平面AECD所成二面角的平面角为120°,求直线AE与平面ABD所成角的正弦值.
相关试卷
这是一份2024高考数学第一轮复习:8.6 向量法求空间角(原卷版),共17页。试卷主要包含了异面直线所成的角,直线与平面所成的角,二面角等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮考点复习7.5.2《利用空间向量求空间角》课时跟踪检测(含详解),共8页。
这是一份(新高考)高考数学一轮复习课时练习8.6.1《利用空间向量求空间角》(含解析),共18页。试卷主要包含了两条异面直线所成角的求法,求二面角的大小,利用空间向量求距离等内容,欢迎下载使用。