搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化冀教版七年级数学下册第九章 三角形专项攻克试卷

    2021-2022学年基础强化冀教版七年级数学下册第九章 三角形专项攻克试卷第1页
    2021-2022学年基础强化冀教版七年级数学下册第九章 三角形专项攻克试卷第2页
    2021-2022学年基础强化冀教版七年级数学下册第九章 三角形专项攻克试卷第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    七年级下册第九章 三角形综合与测试习题

    展开

    这是一份七年级下册第九章 三角形综合与测试习题,共23页。试卷主要包含了如图,直线l1l2,被直线l3,如图,在ABC中,点D等内容,欢迎下载使用。
    冀教版七年级数学下册第九章 三角形专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知△ABC中,BDCE分别是△ABC的角平分线,BDCE交于点O,如果设∠BACn°(0<n<180),那么∠BOE的度数是(  )A.90°n° B.90°n° C.45°+n° D.180°﹣n°2、如图,在中,若点使得,则的(       A.高 B.中线 C.角平分线 D.中垂线3、以下长度的线段能和长度为2,6的线段组成三角形的是(       A.2 B.4 C.6 D.94、三个等边三角形的摆放位置如图所示,若,则的度数为  A. B. C. D.5、如图,直线l1l2,被直线l3l4所截,并且l3l4,∠1=46°,则∠2等于(  )A.56° B.34° C.44° D.46°6、若三条线段中a=3,b=5,c为奇数,那么以abc为边组成的三角形共有(       A.1个 B.2个 C.3个 D.4个7、以下各组线段长为边,能组成三角形的是(       A. B. C. D.8、如图,在ABC中,点DE分别是ACAB的中点,且,则       A.12 B.6 C.3 D.29、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是(       A.63° B.58° C.54° D.56°10、下列各图中,有△ABC的高的是(       A. B.C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一副三角板按如图放置,则∠DOC的度数为______.2、△ABC中,已知∠C=90°,∠B=55°,则∠A=_____.3、如图,将一张长方形纸片ABCD沿对角线BD折叠后,点C落在点E处,连接BEADF,再将三角形DEF沿DF折叠后,点E落在点G处,若DG刚好平分∠ADB,那么∠ADB的度数是__________. 4、如图,将绕点B逆时针旋转,得到,若点E恰好落在的延长线上,则__________5、如图,在直线l1l2,把三角板的直角顶点放在直线l2上,三角板中60°的角在直线l1l2之间,如果∠1=35°,那么∠2=___度. 三、解答题(5小题,每小题10分,共计50分)1、如图,在中,的高,的角平分线,于点G,求的大小.2、如图所示,在一副三角板ABC和三角板DEC中,,∠B=30°,∠DEC=∠DCE=45°.(1)当AB∥DC时,如图①,的度数为        °;(2)当重合时,如图②,判断的位置关系并说明理由;(3)如图③,当          °时,AB∥EC(4)当AB∥ED时,如图④、图⑤,分别求出的度数.3、如图所示,四边形ABCD中,ADC的角平分线DEBCD的角平分线CA相交于E点,已知:ACB=32°,CDE=58°.(1)求DEC的度数;(2)试说明直线4、已知:AD//BC,点P为直线AB上一动点,点M在线段BC上,连接MP,∠BAD=α,∠APM=β,∠PMC=γ.(1)如图1,当点P在线段AB上时,若MPAB,α=120°,则γ=     (2)如图2,当点PAB的延长线上时,写出α、β与γ之间的数量关系,并说明理由;(3)如图3,当点PBA的延长线上时,请画出图形,证明出α、β与γ之间的数量关系.5、如图,在ABC中,ADBE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABCAE于点F,求∠AFB的度数. -参考答案-一、单选题1、A【解析】【分析】根据BDCE分别是△ABC的角平分线和三角形的外角,得到,再利用三角形的内角和,得到,代入数据即可求解.【详解】解:∵BDCE分别是△ABC的角平分线,故答案选:A.【点睛】本题考查三角形的内角和定理和外角的性质.涉及角平分线的性质.三角形的内角和定理:三角形的内角和等于.三角形的一个外角等于与它不相邻的两个内角之和.2、B【解析】【分析】根据三角形的中线定义即可作答.【详解】解:∵BD=DCAD是△ABC的中线,故选:B.【点睛】本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3、C【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】解:设第三边的长为,已知长度为2,6的线段,根据三角形的三边关系可得,,即,根据选项可得故选C【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.4、A【解析】【分析】利用三个平角的和减去中间三角形的内角和,再减去三个的角即可.【详解】解:故选:【点睛】本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.5、C【解析】【分析】依据l1l2,即可得到∠3=∠1=46°,再根据l3l4,可得∠2=90°﹣46°=44°.【详解】解:如图:l1l2,∠1=46°,∴∠3=∠1=46°,又∵l3l4∴∠2=90°﹣46°=44°,故选:C.【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.6、C【解析】【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.c是奇数,c=3或5或7,有3个值.则对应的三角形有3个.故选:C【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.7、B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形,故不符合题意;B、4+6>8,能组成三角形,故符合题意;C、5+6<12,不能够组成三角形,故不符合题意;D、3+3=6,不能组成三角形,故不符合题意.故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.8、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则SABDSABC=6,然后利用SBDESABD求解.【详解】解:∵点DAC的中点,SABDSABC×12=6,∵点EAB的中点,SBDESABD×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键. 三角形的中线把三角形分成面积相同的两部分.9、C【解析】【分析】先根据三角形外角的性质求出∠ACD=63°,再由ABC绕点C按逆时针方向旋转至DEC,得到ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【详解】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至DEC∴△ABC≌△DEC∴∠ACB=∠DCE∴∠BCE=∠ACD∴∠BCE=63°,∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.故选:C.【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到ABC≌△DEC.10、B【解析】【分析】利用三角形的高的定义可得答案.【详解】解:∵选项B是过顶点C作的AB边上的高,∴有△ABC的高的是选项B,故选:B.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.二、填空题1、【解析】【分析】根据题意得:∠ACB=30°,∠ACD=45°,∠D=90°,从而得到∠OCD=15°,再由再由直角三角形两锐角互余,即可求解.【详解】解:根据题意得:∠ACB=30°,∠ACD=45°,∠D=90°,∴∠OCD=∠ACD-∠ACB=15°,∴∠DOC=90°-∠OCD=75°.故答案为:75°【点睛】本题主要考查了直角三角形的性质,根据题意得到∠ACB=30°,∠ACD=45°,∠D=90°是解题的关键.2、35°【解析】【分析】根据三角形的内角和定理列式计算即可得解.【详解】∵∠C=90°,∠B=55°,∴∠A=180°-∠B-∠C=180°-55°-90°=35°.故答案为:35°.【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理并准确计算是解题的关键.3、36°##36度【解析】【分析】根据折叠的性质可得∠BDC=∠BDE,∠EDF=∠GDF,由角平分线的定义可得∠BDA=∠GDF+∠BDG=2∠GDF,然后根据矩形的性质及角的运算可得答案.【详解】解:由折叠可知,∠BDC=∠BDE,∠EDF=∠GDFDG平分∠ADB∴∠BDG=∠GDF∴∠EDF=∠BDG∴∠BDE=∠EDF+∠GDF+∠BDG=3∠GDF∴∠BDC=∠BDE=3∠GDFBDA=∠GDF+∠BDG=2∠GDF∵∠BDC+∠BDA=90°=3∠GDF+2∠GDF=5∠GDF∴∠GDF=18°,∴∠ADB=2∠GDF=2×18°=36°.故答案为:36°.【点睛】本题考查的是角的运算及角平分线的定义,正确掌握折叠的性质是解决此题的关键.4、85【解析】【分析】利用旋转的性质得出旋转前后对应线段相等、对应角相等即可.【详解】解:∵将△ABC绕点B逆时针旋转95°,∴∠ABE=95°,ABBE,∠CAB=∠EABBE∴∠E=∠BAE∴∠BAE+∠CAB=∠BAE+∠E=180°−∠ABE=180°−95°=85°,故答案为:85.【点睛】本题主要考查了旋转的性质以及三角形内角和定理的应用,熟记旋转的性质是解决问题的关键.5、65【解析】【分析】根据三角形外角性质即可求得∠3的度数,再依据平行线的性质,可求得∠3=∠2.【详解】解:∵∠3是△ABC的外角,∠1=∠ABC=35°,∴∠3=∠C+∠ABC=30°+35°=65°,∵直线l1l2∴∠2=∠3=65°,故答案为:65.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等两直线平行,②内错角相等两直线平行,③同旁内角互补两直线平行.三、解答题1、【解析】【分析】先由直角三角形两锐角互余得到∠B=40°,在三角形△ABC 中,由内角和定理求得∠BAE=30°,由角平分线定义得出 ∠BAC=60°,即可求得∠ACD .【详解】解:的高,中,的角平分线,【点睛】此题考查三角形内角和定理、角平分线定义和直角三角形两锐角互余等,掌握定义和定理是解答此题的关键.2、(1)30;(2)DEAC,理由见解析;(3)15;(4)图④∠DCB=60°;图⑤∠DCB=120°;【解析】【分析】(1)根据两直线平行,内错角相等求解即可;(2)根据内错角相等,两直线平行证明即可;(3)根据ABEC,得到∠ECB=∠B=30°,即可得到∠DCB=∠DCE-∠ECB=15°;(4)如图④所示,,设CDAB交于F,由平行线的性质可得∠BFC=∠EDC=90°,再由三角形内角和定理∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长ACED延长线于G,由平行线的性质可得∠G=∠A=60°,再由∠ACB=∠CDE=90°,得到∠BCG=∠CDG=90°,即可求出∠DCG=180°-∠G-∠CDG=30°,则∠BCD=∠BCG+∠DCG=120°.【详解】解:(1)∵ABCD∴∠BCD=∠B=30°,故答案为:30;(2)DEAC,理由如下:∵∠CBE=∠ACB=90°,DEAC(3)∵ABEC∴∠ECB=∠B=30°,又∵∠DCE=45°,∴∠DCB=∠DCE-∠ECB=15°,∴当∠DCB=15°时,ABEC故答案为:15;(4)如图④所示,设CDAB交于FABED∴∠BFC=∠EDC=90°,∴∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长ACED延长线于GAB∥DE∴∠G=∠A=60°,∵∠ACB=∠CDE=90°,∴∠BCG=∠CDG=90°,∴∠DCG=180°-∠G-∠CDG=30°,∴∠DCB=∠BCG+∠DCG=120°.【点睛】本题主要考查了平行线的性质与判定,三角形内角和定理,邻补角互补等等,解题的关键在于能够熟练掌握平行线的性质与判定条件.3、(1)90°;(2)见解析【解析】【分析】(1)根据三角形内角和定理即可求解;(2)首先求得∠ADC的度数和∠DCB的度数,根据同旁内角互补,两直线平行即可证得.【详解】解:(1)∵ACBCD的平分线 ∴∠DEC=180°-∠ACD-∠CDE=180°-32°-58°=90°;(2)∵DE平分∠ADCCA平分∠BCD∴∠ADC=2∠CDE=116°,∠BCD=2∠ACD=64°∵∠ADC+∠BCD=116°+64°=180°【点睛】本题主要考查了角平分线,平行线的判定以及三角形内角和定理,熟练掌握相关性质和定理是解答本题的关键.4、 (1)150°(2)γ=α+β,理由见解析(3)图形见解析,α、β与γ之间的数量关系为:α+γ-β=180°【解析】【分析】(1)由AD//BC,α=120°可求出∠B=60°,由MPAB得到∠MPB=90°,最后由γ=∠MPB+∠B=150°即可求解;(2)由AD//BC得到∠CBP=α,再由γ=∠CBP+∠P=α+β即可求解;(3)画出图形,由AD//BC,得到∠CMN=∠DNP=γ,∠PNA=180°-∠DNP=180°-γ,再在△PNA中,由三角形外角定理即可求解.(1)解:如下图所示:AD//BC,α=120°,∴∠B=60°,MPAB∴∠MPB=90°,∴γ=∠MPB+∠B=90°+60°=150°.故答案是:150°;(2)解:如下图所示:AD//BC∴∠CBP=∠DAB=α,MBP中,由三角形外角定理可知:∠CMP=∠CBP+∠P∴γ=α+β.(3)解:当点PBA的延长线上时,图形如下所示,α、β与γ之间的数量关系为:AD//BC∴∠CMN=∠DNP=γ,∴∠PNA=180°-∠DNP=180°-γ,PNA中,由三角形外角定理可知:∠DAB=∠PNA+∠P∴α=180°-γ+β,故α、β与γ之间的数量关系为:α+γ-β=180°.【点睛】本题考查了平行线的性质,三角形的外角的性质,平角的定义,是基础题,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.5、∠AFB=40°.【解析】【分析】由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.【详解】解:∵ADBE∴∠ADC=90°,∵∠DAC=10°,∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,AE是∠MAC的平分线,BF平分∠ABC又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB∴∠AFB=∠MAE﹣∠ABF【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键. 

    相关试卷

    数学第九章 三角形综合与测试综合训练题:

    这是一份数学第九章 三角形综合与测试综合训练题,共22页。试卷主要包含了如图,在中,,,则外角的度数是等内容,欢迎下载使用。

    初中数学冀教版七年级下册第九章 三角形综合与测试复习练习题:

    这是一份初中数学冀教版七年级下册第九章 三角形综合与测试复习练习题,共20页。试卷主要包含了如图,在中,AD,如图,直线l1l2,被直线l3等内容,欢迎下载使用。

    初中数学冀教版七年级下册第九章 三角形综合与测试达标测试:

    这是一份初中数学冀教版七年级下册第九章 三角形综合与测试达标测试,共22页。试卷主要包含了如图,在中,若点使得,则是的等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map