终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新冀教版七年级数学下册第九章 三角形专项测评试题(含详细解析)

    立即下载
    加入资料篮
    2022年最新冀教版七年级数学下册第九章 三角形专项测评试题(含详细解析)第1页
    2022年最新冀教版七年级数学下册第九章 三角形专项测评试题(含详细解析)第2页
    2022年最新冀教版七年级数学下册第九章 三角形专项测评试题(含详细解析)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第九章 三角形综合与测试同步训练题

    展开

    这是一份2020-2021学年第九章 三角形综合与测试同步训练题,共23页。
    冀教版七年级数学下册第九章 三角形专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是(  )A.30° B.35° C.45° D.60°2、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是(  )A.3cm B.4cm C.7cm D.10cm3、人字梯中间一般会设计一“拉杆”,这样做的道理是(       A.两点之间线段最短 B.三角形的稳定性C.两点确定一条直线 D.垂线段最短4、当三角形中一个内角是另一个内角的2倍时,我们称此三角形为“特征三角形”,其中称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是(       A.80° B.90° C.100° D.120°5、如图,在中,D延长线上一点,,则的度数为(       A. B. C. D.6、两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠F=45°,∠B=60°,ACDE交于点M.若BCEF,则∠DMC的大小为(  )A.100° B.105° C.115° D.120°7、数学课上,同学们在作AC边上的高时,共画出下列四种图形,其中正确的是(       ).A. B.C. D.8、以下长度的三条线段,能组成三角形的是(       A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,99、如图,于点于点于点,下列关于高的说法错误的是(       A.在中,边上的高 B.在中,边上的高C.在中,边上的高 D.在中,边上的高10、如图,把△ABC绕顶点C按顺时针方向旋转得到△ABC′,当AB′⊥AC,∠A50°,∠ACB115°时,∠BCA的度数为(  )A.30° B.35° C.40° D.45°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把纸片沿DE折叠,使点A落在图中的处,若,则的大小为______.2、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交于点,若,则___________度.3、如图,AEF共线,ABCD,∠A=130°,∠C=125°,则∠CEF等于_______度.4、一副直角三角板,∠CAB=∠FDE=90°,∠F=45°,∠C=60°,按图中所示位置摆放,点D在边AB上,EFBC,则∠ADF的度数为_____度.5、如图,在中,,点D是边上一点,将沿直线翻折,使点B落在点E处,如果,那么等于______度.三、解答题(5小题,每小题10分,共计50分)1、如图,ABCD,∠BAC的角平分线AP与∠ACD的角平分线CP相交于点P,求证:APCP2、如图,将一副直角三角板的直角顶点C叠放在一起.(1)如图(1),若∠DCE=33°,则∠BCD      ,∠ACB      (2)如图(1),猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A重合在一起,则∠DAB与∠CAE的数量关系为      3、用无刻度的直尺作图,保留作图痕迹. (1)在图1中,BD是△ABC的角平分线,作△ABC的平分内角∠BCA的角平分线;(2)在图2中,AD是∠BAC的角平分线,作△ABC的∠BCA相邻的外角的角平分线.   4、已知AMCN,点B在直线AMCN之间,ABBC于点B(1)如图1,请直接写出∠A和∠C之间的数量关系:          (2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MABCH平分∠NCBAECH交于点G,则∠AGH的度数为          5、(1)如图所示,直角三角板和直尺如图放置.若,试求出的度数.(2)已知ABC的三边长abc,化简 -参考答案-一、单选题1、B【解析】【分析】由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.【详解】解:∵△AOB绕点O逆时针旋转65°得到△COD∴∠AOC=65°,∵∠AOB=30°,∴∠BOC=∠AOC−∠AOB=35°.故选:B.【点睛】本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.2、C【解析】【分析】设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设三角形的第三边是xcm.则7-3<x<7+3.即4<x<10,四个选项中,只有选项C符合题意,故选:C.【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.3、B【解析】【分析】首先要考虑梯子中间设置“拉杆”的原因,是为了让梯子更加稳固,而更加稳固的原因是“拉杆”与梯子两边形成了三角形.【详解】人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加梯子的稳定性.故选:B.【点睛】本题考查三角形的稳定性,善于从生活中发现数学原理是解决本题的关键.4、B【解析】【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.【详解】解:由题意得:α=2β,α=60°,则β=30°,180°-60°-30°=90°,故选B.【点睛】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.5、B【解析】【分析】根据三角形外角的性质可直接进行求解.【详解】解:∵故选B.【点睛】本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.6、B【解析】【分析】首先根据直角三角形两锐角互余可算出∠C和∠E的度数,再由“两直线平行,内错角相等”,可求出∠MDC的度数,在△CMD中,利用三角形内角和可求出∠CMD的度数.【详解】解:在△ABC和△DEF中,​​​​​​​∠BAC=∠EDF=90°,∠F=45°,∠B=60°,∴∠C=90°-∠B=30°,E=90°-∠F=45°,BCEF∴∠MDC=∠E=45°,在△CMD中,∠CMD=180°-∠C-∠MDC=105°.故选:B.【点睛】本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.7、A【解析】【分析】满足两个条件:①经过点B;②垂直AC,由此即可判断.【详解】解:根据垂线段的定义可知,A选项中线段BE,是点B作线段AC所在直线的垂线段,故选:A.【点睛】本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8、C【解析】【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.8>7,能组成三角形,符合题意;D、3+5<9,不能组成三角形,不符合题意.故选:C.【点睛】本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.9、C【解析】【详解】解:A、在中,边上的高,该说法正确,故本选项不符合题意;B、在中,边上的高,该说法正确,故本选项不符合题意;C、在中,不是边上的高,该说法错误,故本选项符合题意;D、在中,边上的高,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.10、B【解析】【分析】由旋转的性质可得∠A′=∠A=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA=40°,即可求解.【详解】解:根据旋转的性质可知∠A′=∠A=50°,∠BCB'=∠ACA',∴∠ACA=90°﹣50°=40°,∴∠BCB′=∠ACA=40°,∴∠BCA=∠ACB﹣∠ACA﹣∠BCB′=115°﹣40°﹣40°=35°.故选:B.【点睛】本题主要考查了旋转的性质,三角形内角和定理的应用,解决这类问题要找准旋转角、以及旋转后对应的线段和角.二、填空题1、##32度【解析】【分析】利用折叠性质得,再根据三角形外角性质得,利用邻补角得到,则,然后利用进行计算即可.【详解】解:∵纸片沿DE折叠,使点A落在图中的A'处,故答案为:【点睛】本题考查了折叠的性质,三角形外角的性质,三角形内角和定理等,理解题意,熟练掌握综合运用各个知识点是解题关键.2、20【解析】【分析】利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB即可.【详解】解:∵EFCD∵∠1是DCB的外角,∠1-∠B=50°-30°=20º,故答案为:20.【点睛】本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识.3、75【解析】【分析】根据平行线的性质求出∠BDC,求出∠FDE,根据三角形内角和定理求出即可.【详解】解:连接AC,如图:ABCD∴∠BAC+∠DCA=180°,∵∠BAF=130°,∠DCE=125°,∴(∠CAF+∠ACE)+(∠BAC+∠DCA)=130°+125°=255°,∴∠CAF+∠ACE=255°-(∠BAC+∠DCA)=255°+180°=75°,∵∠CEFACE外角,∴∠CEF=∠CAF+∠ACE=75°.故答案为:75.【点睛】本题主要考查了平行线的性质.解题的关键是掌握平行线的性质:两直线平行,同旁内角互补.4、75【解析】【分析】CBED交点为G,依据平行线的性质,即可得到∠CGD的度数,再根据三角形外角的性质,得到∠BDE的度数,即可得∠ADF的度数.【详解】如图所示,设CBED交点为G∵∠CAB=∠FDE=90°,∠F=45°,∠C=60°,∴∠E=90°-∠F=45°,∠B=90°-∠C=30°,EFBC∴∠E=∠CGD=45°,又∵∠CGD是△BDG的外角,∴∠CGD=∠B+∠BDE∴∠BDE=45°-30°=15°,∴∠ADF =180°-90°-∠BDE =75°故答案为:75.【点睛】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:两条平行线被第三条直线所截,同位角相等.5、【解析】【分析】先根据等腰三角形的性质和三角形内角和等于180°求出∠B=∠ACB=70°,由折叠可得∠BDC=∠EDC,由DE∥AC可得∠EDC=∠BCD,在等腰三角形BDC中求出∠BCD的度数,根据角度关系可求∠ACD的度数.【详解】解:如图,由折叠可知//故答案为:【点睛】本题考查了折叠问题,涉及到平行线的性质和等腰三角形的性质,熟练运用折叠的性质是解决本题的关键.三、解答题1、见解析【解析】【分析】利用角平分线的性质及平行线的性质,通过等量代换能证明出,即可证明APCP【详解】证明:∵ABCD(已知),∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补),APCP分别平分∠BAC、∠ACD(已知),∴∠CAP=BACACP=ACD∴∠CAP+∠ACP=BAC+ACD=(∠BAC+∠ACD)=90°,又∵∠CAP+∠ACP+∠P=180°,∴∠P=90°,APCP【点睛】本题考查了角平分线的性质、平行线的性质,解题的关键是掌握角平分线的性质进行求解.2、(1)57°,147°;(2)∠ACB=180°-∠DCE,理由见解析;(3)∠DAB+CAE=120°【解析】【分析】(1)根据角的和差定义计算即可.(2)利用角的和差定义计算即可.(3)利用特殊三角板的性质,角的和差定义即可解决问题.【详解】解:(1)由题意,故答案为:57°,147°.       (2)∠ACB=180°-∠DCE     理由如下:   ACE=90°-∠DCE,∠BCD=90°-∠DCE   ACB=∠ACE+∠DCE+∠BCD=90°-∠DCE+∠DCE+90°-∠DCE=180°-∠DCE       (3)结论:∠DAB+∠CAE=120°.理由如下:∵∠DAB+∠CAE=∠DAE+∠CAE+∠BAC+∠CAE=∠DAC+∠EAB又∵∠DAC=∠EAB=60°,∴∠DAB+∠CAE=60°+60°=120°.故答案为:∠DAB+∠CAE=120°.【点睛】本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3、(1)见解析;(2)见解析.【解析】【分析】(1)作∠BAC的平分线交BD于点O,作射线COABE,线段CE即为所求;(2)作△ABC的∠ABC的外角的平分线交ADD,作射线CD,射线CD即为所求.【详解】(1)如图1,线段CE为所求; (2)如图2,线段CD为所求.   【点睛】本题主要考查了基本作图、三角形的外角、三角形的角平分线等知识点,理解三角形的内角平分线交于一点成为解答本题的关键.4、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°【解析】【分析】(1)过点BBEAM,利用平行线的性质即可求得结论;(2)过点BBEAM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.【详解】(1)过点BBEAM,如图,BEAM∴∠A=∠ABEBEAMAMCNBECN∴∠C=∠CBEABBC∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案为:∠A+∠C=90°;(2)∠A和∠C满足:∠C﹣∠A=90°.理由:过点BBEAM,如图,BEAM∴∠A=∠ABEBEAMAMCNBECN∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠CABBC∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)设CHAB交于点F,如图,AE平分∠MAB∴∠GAFMABCH平分∠NCB∴∠BCFBCN∵∠B=90°,∴∠BFC=90°﹣∠BCF∵∠AFG=∠BFC∴∠AFG=90°﹣∠BCF∵∠AGH=∠GAF+∠AFG∴∠AGHMAB+90°﹣BCN=90°﹣(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=90°,∴∠AGH=90°﹣45°=45°.故答案为:45°.【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.5、(1)40°;(2)2b-2c【解析】【分析】(1)过FFHAB,则ABFHCD,根据平行线的性质即可得到结论;(2)先根据三角形三边关系判断出a+b-cb-a-c的符号,再把要求的式子进行化简,即可得出答案.【详解】(1)过点FFHABABCDFHABABCDFH∴∠1=∠3,∠2=∠4,∴∠EFG=∠3+∠4=∠1+∠2,∵∠G=90°,∠E=30°,∴∠EFG=90°-∠E=90°-30°=60°,即∠1+∠2=60°,∵∠1=20°,∴∠2=60°-∠1=60°-20°=40°;(2)∵△ABC的三边长分别是abca+bcb-aca+b-c>0,b-a-c<0,∴|a+b-c|-|b-a-c|=a+b-c-(-b+a+c)=a+b-c+b-a-c=2b-2c【点睛】本题考查了平行线的性质,三角形三边关系,用到的知识点是平行线的性质定理、三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b-cb-a-c的符号. 

    相关试卷

    冀教版七年级下册第九章 三角形综合与测试课后测评:

    这是一份冀教版七年级下册第九章 三角形综合与测试课后测评,共19页。试卷主要包含了如图,图形中的的值是等内容,欢迎下载使用。

    初中数学冀教版七年级下册第九章 三角形综合与测试同步达标检测题:

    这是一份初中数学冀教版七年级下册第九章 三角形综合与测试同步达标检测题,共21页。试卷主要包含了如图,图形中的的值是,如图,,如图,点B等内容,欢迎下载使用。

    冀教版七年级下册第九章 三角形综合与测试课后作业题:

    这是一份冀教版七年级下册第九章 三角形综合与测试课后作业题,共20页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map