初中数学第九章 三角形综合与测试课堂检测
展开这是一份初中数学第九章 三角形综合与测试课堂检测,共24页。试卷主要包含了下列图形中,不具有稳定性的是,如图,在中,AD等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则的度数是( )
A.45° B.60° C.75° D.85°
2、如图,直线l1、l2分别与△ABC的两边AB、BC相交,且l1∥l2,若∠B=35°,∠1=105°,则∠2的度数为( )
A.45° B.50° C.40° D.60°
3、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.
证法1:如图, ∵∠A=70°,∠B=63°, 且∠ACD=133°(量角器测量所得) 又∵133°=70°+63°(计算所得) ∴∠ACD=∠A+∠B(等量代换). | 证法2:如图, ∵∠A+∠B+∠ACB=180°(三角形内角和定理), 又∵∠ACD+∠ACB=180°(平角定义), ∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换). ∴∠ACD=∠A+∠B(等式性质). |
下列说法正确的是( )
A.证法1用特殊到一般法证明了该定理
B.证法1只要测量够100个三角形进行验证,就能证明该定理
C.证法2还需证明其他形状的三角形,该定理的证明才完整
D.证法2用严谨的推理证明了该定理
4、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为( )
A.40° B.45° C.50° D.60°
5、已知的三边长分别为a,b,c,则a,b,c的值可能分别是( )
A.1,2,3 B.3,4,7
C.2,3,4 D.4,5,10
6、下列图形中,不具有稳定性的是( )
A. B.
C. D.
7、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为( )
A.8 B.10 C.20 D.40
8、下图中能体现∠1一定大于∠2的是( )
A. B.
C. D.
9、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是( )
A.63° B.58° C.54° D.56°
10、如图,在中,,,将沿直线翻折,点落在点的位置,则的度数是( )
A.30° B.45° C.60° D.75°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=56°,∠2=29°,则∠A的度数为______度.
2、如图,∠MAN=100°,点B,C是射线AM,AN上的动点,∠ACB的平分线和∠MBC的平分线所在直线相交于点D,则∠BDC的大小为__________度.
3、如图,在△ABC中,∠C=62°,△ABC两个外角的角平分线相交于G,则∠G的度数为_____.
4、如图,在△ABC中,BA=BC,D为△ABC内一点,将△BDC绕点B逆时针旋转至△BEA处,延长AE,CD交于点F,若∠ABC=70°,则∠AFC的度数为 _____.
5、如图,在△ABC中,点D,E,F分别是BC,AD,EC的中点,若△ABC的面积等于36,则△BEF的面积为________.
三、解答题(5小题,每小题10分,共计50分)
1、根据题意画出图形,并填注理由
证明:三角形的内角和等于180°.
已知:△ABC
求证:∴∠A+∠B+∠C=180°
证明:作BC的延长线CD,过点C作射线CE BA.
∵CE BA(辅助线)
∴∠B=∠ECD( )
∠A=∠ACE( )
∵∠BCA+∠ACE+∠ECD=180°( )
∴∠A+∠B+∠ACB=180°( )
2、如图:已知AB∥CD,BD平分∠ABC,AC平分∠BCD,求∠BOC的度数.
∵AB∥CD(已知),
∴∠ABC+ =180°( ).
∵BD平分∠ABC,AC平分∠BCD,(已知),
∴∠DBC=∠ABC,∠ACB=∠BCD(角平分线的意义).
∴∠DBC+∠ACB=( )(等式性质),
即∠DBC+∠ACB= °.
∵∠DBC+∠ACB+∠BOC=180°( ),
∴∠BOC= °(等式性质).
3、如图,在中,AD是BC边上的高,CE平分,若,,求的度数.
4、如图,AD是的高,CE是的角平分线.若,,求的度数.
5、如图,在中,是角平分线,,.
(1)求的度数;
(2)若,求的度数.
-参考答案-
一、单选题
1、C
【解析】
【分析】
先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.
【详解】
解:如图:
∵∠ACD=90°、∠F=45°,
∴∠CGF=∠DGB=45°,
∴∠α=∠D+∠DGB=30°+45°=75°.
故选C.
【点睛】
本题主要考查三角形的外角的性质,掌握三角形的内角和定理和三角形外角的性质是解答本题的关键.
2、C
【解析】
【分析】
根据三角形内角和定理球场∠3的度数,利用平行线的性质求出答案.
【详解】
解:∵∠B=35°,∠1=105°,
∴∠3=180-∠1-∠B=,
∵l1∥l2,
∴∠2=∠3=,
故选:C.
.
【点睛】
此题考查三角形内角和定理,两直线平行内错角相等的性质,熟记三角形内角和等于180度及平行线的性质并熟练解决问题是解题的关键.
3、D
【解析】
【分析】
利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.
【详解】
解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,
证法2才是用严谨的推理证明了该定理,
故A不符合题意,C不符合题意,D符合题意,
证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;
故选D
【点睛】
本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.
4、C
【解析】
【分析】
根据三角形内角和定理确定,然后利用平行线的性质求解即可.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C.
【点睛】
题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.
5、C
【解析】
【分析】
三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.
【详解】
解:A、1+2=3,不能组成三角形,不符合题意;
B、3+4=7,不能组成三角形,不符合题意;
C、2+3>4,能组成三角形,符合题意;
D、4+5<10,不能组成三角形,不符合题意;
故选:C.
【点睛】
本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.
6、B
【解析】
【分析】
由三角形的稳定性的性质判定即可.
【详解】
A选项为三角形,故具有稳定性,不符合题意,故错误;
B选项为四边形,非三角形结构,故不具有稳定性,符合题意,故正确;
C选项为三个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误;
D选项为两个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误.
故选B.
【点睛】
本题考查了三角形的稳定性,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征,叫做三角形的稳定性注意①要看图形是否具有稳定性,关键在于它的结构是不是三角形结构②除了三角形外,其他图形都不具备稳定性,因此在生产建设中,三角形的应用非常广泛.
7、C
【解析】
【分析】
根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.
【详解】
解:∵AD是边BC上的中线,CD的长为5,
∴CB=2CD=10,
的面积为,
故选:C.
【点睛】
本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.
8、C
【解析】
【分析】
由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.
【详解】
解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;
B、如图,
若两线平行,则∠3=∠2,则
若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;
C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;
D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.
故选:C.
【点睛】
本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.
9、C
【解析】
【分析】
先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.
【详解】
解:∵∠A=33°,∠B=30°,
∴∠ACD=∠A+∠B=33°+30°=63°,
∵△ABC绕点C按逆时针方向旋转至△DEC,
∴△ABC≌△DEC,
∴∠ACB=∠DCE,
∴∠BCE=∠ACD,
∴∠BCE=63°,
∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.
故选:C.
【点睛】
本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.
10、C
【解析】
【分析】
设交于点,是射线上的一点,设,根据三角形的外角的性质可得,进而根据平角的定义即可求得,即可求得.
【详解】
如图,设交于点,是射线上的一点,
折叠,
设
即
故选C
【点睛】
本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.
二、填空题
1、27
【解析】
【分析】
如图,∠3=∠1,由∠3=∠2+∠A计算求解即可.
【详解】
解:如图
∵a∥b,∠1=56°
∴∠3=∠1=56°
∵∠3=∠2+∠A,∠2=29°
∴∠A=∠3﹣∠2=56°﹣29°=27°
故答案为:27.
【点睛】
本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.
2、50
【解析】
【分析】
根据角平分线的定义和三角形的外角性质解答即可.
【详解】
解:∵CD平分∠ACB,BE平分∠MBC,
∴∠BCD=∠ACB,∠EBC=∠MBC,
∵∠MBC=∠MAN+∠ACB,∠EBC=∠BDC+∠BCD,∠MAN=100°,
∴∠BDC=∠EBC-∠BCD=∠MBC-∠ACB=∠MAN=50°,
故答案为:50.
【点睛】
本题考查三角形的外角性质、角平分线的定义,熟练掌握三角形的外角性质是解答的关键.
3、59°##59度
【解析】
【分析】
先利用三角形内角和定理求出∠CAB+∠CBA=180°-∠C=118°,从而利用三角形外角的性质求出∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,再由角平分线的定义求出,由此求解即可.
【详解】
解:∵∠C=62°,
∴∠CAB+∠CBA=180°-∠C=118°,
∵∠DAB=∠C+∠CBA,∠EBA=∠C+∠CAB,
∴∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,
∵△ABC两个外角的角平分线相交于G,
∴,,
∴,
∴∠G=180°-∠GAB-∠GBA=59°,
故答案为:59°.
【点睛】
本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟知相关知识是解题的关键.
4、70°或70度
【解析】
【分析】
先根据旋转的性质得到∠EBD=∠ABC=70°,∠BDC=∠BEA,然后根据邻补角的性质和三角形内角和定理即可得到∠AFC=∠EBD=70°.
【详解】
解: ∵△BDC绕点B逆时针旋转得到△BEA,
∴∠EBD=∠ABC=70°,∠BDC=∠BEA,
∴∠FEG=∠BDG,
∵∠EGF=∠DGB,
∴∠AFC=∠EBD=70°.
故答案为:70°.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
5、9
【解析】
【分析】
根据三角形的中线将三角形分成面积相等的两部分即可求得.
【详解】
解:∵点D,E,F分别是BC,AD,EC的中点,
∴AE=DE=AD,EF=CF=CE,BD=DC=BC,
∵△ABC的面积等于36,
∴,
,,
∴,
∴,
故答案为:9.
【点睛】
本题主要考查了三角形中线的性质,熟知三角形的中线把三角形分成面积相等的两部分是解题关键..
三、解答题
1、两直线平行,同位角相等;两直线平行,内错角相等;平角等于180°;等量代换
【解析】
【分析】
根据平行线的性质和平角度数等于180°求解即可.
【详解】
解:证明:作BC的延长线CD,过点C作射线CE BA.
∵CE BA(辅助线)
∴∠B=∠ECD(两直线平行,同位角相等)
∠A=∠ACE(两直线平行,内错角相等)
∵∠BCA+∠ACE+∠ECD=180°(平角等于180°)
∴∠A+∠B+∠ACB=180°(等量代换)
故答案为:两直线平行,同位角相等;两直线平行,内错角相等;平角等于180°;等量代换.
【点睛】
此题考查了证明三角形的内角和等于180°,平行线的性质以及平角度数等于180°,解题的关键是熟练掌握平行线的性质以及平角度数等于180°.
2、∠BCD,两直线平行,同旁内角互补,∠ABC+∠BCD,90,三角形内角和等于180°,90
【解析】
【分析】
根据题意利用AB∥CD得∠ABC+∠BCD=180;等式的性质得∠DBC+∠ACB=(∠ABC+∠ACD),进而由三角形内角和为180°得∠BOC=90°.
【详解】
解:∵AB∥CD(已知),
∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),
∵BD平分∠ABC,AC平分∠BCD(已知),
∴∠DBC=∠ABC,∠ACB=∠BCD(角平分线定义),
∴∠DBC+∠ACB=(∠ABC+∠BCD)(等式性质),
即∠DBC+∠ACB=90°,
∴∠DBC+∠ACB+∠BOC=180°(三角形内角和等于180°),
∴∠BOC=90°(等式性质),
故答案为:∠BCD,两直线平行,同旁内角互补,∠ABC+∠BCD,90,三角形内角和等于180°,90.
【点睛】
本题考查平行线的性质,等式的性质,三角形内角和定理,角平分线的性质等,解题的关键是掌握相关性质的应用.
3、85°
【解析】
【分析】
由高的定义可得出∠ADB=∠ADC=90,在△ACD中利用三角形内角和定理可求出∠ACB的度数,结合CE平分∠ACB可求出∠ECB的度数.由三角形外角的性质可求出∠AEC的度数,
【详解】
解:∵AD是BC边上的高,
∴∠ADB=∠ADC=90.
在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.
∵CE平分∠ACB,
∴∠ECB=∠ACB=35°.
∵∠AEC是△BEC的外角,,
∴∠AEC=∠B+∠ECB=50°+35°=85°.
答:∠AEC的度数是85°.
【点睛】
本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.
4、
【解析】
【分析】
AD是的高,有;由知;CE是的角平分线可得;,;在中,.
【详解】
解:∵AD是的高
∴
∵
∴
∵CE是的角平分线
∴
∵
∴
∴在中,.
【点睛】
本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.
5、 (1);
(2).
【解析】
【分析】
(1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;
(2)根据垂直得出,然后根据三角形内角和定理即可得.
(1)
解:∵,,
∴,
∵AD是角平分线,
∴,
∴;
(2)
∵,
∴,
∴,
∴.
【点睛】
题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.
相关试卷
这是一份初中冀教版第九章 三角形综合与测试精练,共21页。试卷主要包含了如图,在中,若点使得,则是的等内容,欢迎下载使用。
这是一份初中数学第九章 三角形综合与测试课堂检测,共23页。试卷主要包含了若三角形的两边a,如图,直线l1l2,被直线l3等内容,欢迎下载使用。
这是一份2020-2021学年第九章 三角形综合与测试课后复习题,共27页。试卷主要包含了如图,等内容,欢迎下载使用。