初中数学冀教版七年级下册第九章 三角形综合与测试同步练习题
展开冀教版七年级数学下册第九章 三角形同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列叙述正确的是( )
A.三角形的外角大于它的内角 B.三角形的外角都比锐角大
C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角
2、下列长度的三条线段能组成三角形的是( )
A.3,4,8 B.5,6,11 C.5,6,10 D.4,5,9
3、以下长度的三条线段,能组成三角形的是( )
A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,9
4、如图,已知为的外角,,,那么的度数是( )
A.30° B.40° C.50° D.60°
5、两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠F=45°,∠B=60°,AC与DE交于点M.若BC∥EF,则∠DMC的大小为( )
A.100° B.105° C.115° D.120°
6、小东要从下面四组木棒中选择一组制作一个三角形作品,你认为他应该选( )组.
A.2,3,5 B.3,8,4 C.2,4,7 D.3,4,5
7、如图,在中,,,则外角的度数是( )
A.35° B.45° C.80° D.100°
8、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )
A.50° B.60° C.40° D.30°
9、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是( )
A.30° B.35° C.45° D.60°
10、将一副三角板按不同位置摆放,下图中与互余的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,从A处观测C处的仰角是,从B处观测C处的仰角,则从C处观测A,B两处的视角的度数是__________.
2、已知,在△ABC中,∠B=48°,∠C=68°,AD是BC边上的高,AE平分∠BAC,则∠DAE的度数为____.
3、如图,已知AE∥BD,∠1=88°,∠2=28°.则∠C=_____.
4、一个三角形的三个内角之比为1:2:3,这个三角形最小的内角的度数是 _____.
5、如图,在中,,,E为BC延长线上一点,与的平分线相交于点D,则∠D的度数为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,AD是的高,CE是的角平分线.若,,求的度数.
2、如图,点A和点C分别在的边BD,BE上,并且,.
(1)直接写出BC的取值范围;
(2)若,,,求的度数.
3、如图,ABCD,∠BMN与∠DNM的平分线相交于点G,
完成下面的证明:
∵MG平分∠BMN,
∴∠GMN=∠BMN( ),
同理∠GNM=∠DNM.
∵ABCD
∴∠BMN+∠DNM=________( ).
∴∠GMN+∠GNM=________.
∵∠GMN+∠GNM+∠G=________,
∴∠G=________.
4、如图,Rt△ABC中,,D、E分别是AB、AC上的点,且.求证:ED⊥AB
5、已知:直线AB∥CD,一块三角板EFH,其中∠EFH=90°,∠EHF=60°.
(1)如图1,三角板EFH的顶点H落在直线CD上,并使EH与直线AB相交于点G,若∠2=2∠1,求∠1的度数;
(2)如图2,当三角板EFH的顶点F落在直线AB上,且顶点H仍在直线CD上时,EF与直线CD相交于点M,试确定∠E、∠AFE、∠MHE的数量关系;
(3)如图3,当三角板EFH的顶点F落在直线AB上,顶点H在AB、CD之间,而顶点E恰好落在直线CD上时得△EFH,在线段EH上取点P,连接FP并延长交直线CD于点T,在线段EF上取点K,连接PK并延长交∠CEH的角平分线于点Q,若∠Q﹣∠HFT=15°,且∠EFT=∠ETF,求证:PQ∥FH.
-参考答案-
一、单选题
1、D
【解析】
【分析】
结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.
【详解】
解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;
三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;
三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;
三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;
故选D
【点睛】
本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.
2、C
【解析】
【分析】
根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
【详解】
解:根据三角形的三边关系,得,
A、3+4=7<8,不能组成三角形,该选项不符合题意;
B、5+6=11,不能够组成三角形,该选项不符合题意;
C、5+6=11>10,能够组成三角形,该选项符合题意;
D、4+5=9,不能够组成三角形,该选项不符合题意.
故选:C.
【点睛】
本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
3、C
【解析】
【分析】
由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.
【详解】
解:A、2+3=5,不能组成三角形,不符合题意;
B、4+4=8,不能组成三角形,不符合题意;
C、3+4.8>7,能组成三角形,符合题意;
D、3+5<9,不能组成三角形,不符合题意.
故选:C.
【点睛】
本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.
4、B
【解析】
【分析】
根据三角形的外角性质解答即可.
【详解】
解:∵∠ACD=60°,∠B=20°,
∴∠A=∠ACD−∠B=60°−20°=40°,
故选:B.
【点睛】
此题考查三角形的外角性质,关键是根据三角形外角性质解答.
5、B
【解析】
【分析】
首先根据直角三角形两锐角互余可算出∠C和∠E的度数,再由“两直线平行,内错角相等”,可求出∠MDC的度数,在△CMD中,利用三角形内角和可求出∠CMD的度数.
【详解】
解:在△ABC和△DEF中,
∠BAC=∠EDF=90°,∠F=45°,∠B=60°,
∴∠C=90°-∠B=30°,
∠E=90°-∠F=45°,
∵BC∥EF,
∴∠MDC=∠E=45°,
在△CMD中,∠CMD=180°-∠C-∠MDC=105°.
故选:B.
【点睛】
本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.
6、D
【解析】
【分析】
根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.
【详解】
解:根据三角形的三边关系,得
A、2+3=5,不能组成三角形,不符合题意;
B、3+4<8,不能够组成三角形,不符合题意;
C、2+4<7,不能够组成三角形,不符合题意;
D、3+4>5,不能够组成三角形,不符合题意.
故选:D.
【点睛】
本题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
7、C
【解析】
【分析】
根据三角形的外角的性质直接求解即可,.
【详解】
解:∵在中,,,
∴
故选C
【点睛】
本题考查了三角形的外角的性质,掌握三角形的外角的性质是解题的关键.
8、A
【解析】
【分析】
根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.
【详解】
解: 将△OAB绕点O逆时针旋转80°得到△OCD,
∠A的度数为110°,∠D的度数为40°,
故选A
【点睛】
本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.
9、B
【解析】
【分析】
由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.
【详解】
解:∵△AOB绕点O逆时针旋转65°得到△COD,
∴∠AOC=65°,
∵∠AOB=30°,
∴∠BOC=∠AOC−∠AOB=35°.
故选:B.
【点睛】
本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.
10、A
【解析】
【分析】
根据平角的定义可判断A,D,根据同角的余角相等可判断B,根据三角形的外角的性质可判断C,从而可得答案.
【详解】
解:选项A:根据平角的定义得:∠α+90°+∠β=180°,
∴∠α+∠β=90°, 即∠α与∠β互余;故A符合题意;
选项B:如图,
故B不符合题意;
选项C:如图,
故C不符合题意;
选项D:
故D不符合题意;
故选A
【点睛】
本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.
二、填空题
1、
【解析】
【分析】
根据三角形外角的性质求解即可.
【详解】
解:由题意可得,,
∴,
故答案为:
【点睛】
此题考查了三角形外角的性质,解题的关键是掌握三角形外角的有关性质.
2、10°##10度
【解析】
【分析】
由三角形内角和求出的度数,然后利用角平分线的定义求出的度数,再根据AD⊥BC求出的度数,利用即可求出的度数.
【详解】
解:如图,
∵∠B=48°,∠C=68°
∵AE平分∠BAC
∵AD⊥BC
故答案为
【点睛】
本题主要考查三角形内角和定理和角平分线的定义,掌握三角形内角和定理和角平分线的定义是解题的关键.
3、60°
【解析】
【分析】
根据平行线的性质可得∠3=88°,根据三角形的外角性质即可求得∠C
【详解】
解:∵
∴∠1=∠3=88°,
∵∠3=∠2+∠C,
∴∠C=∠3﹣∠2=88°﹣28°=60°,
故答案为:60°.
【点睛】
本题考查了平行线的性质与判定,三角形的外角的性质,求得∠3=88°是解题的关键.
4、30°##30度
【解析】
【分析】
设三角形的三个内角分别为x,2x,3x,再根据三角形内角和定理求出x的值,进而可得出结论.
【详解】
解:∵三角形三个内角的比为1:2:3,
∴设三角形的三个内角分别为x,2x,3x,
∴x+2x+3x=180°,解得x=30°.
∴这个三角形最小的内角的度数是30°.
故答案为:30°.
【点睛】
本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
5、20°##20度
【解析】
【分析】
根据角平分线的性质得到,再利用三角形外角的性质计算.
【详解】
解:∵与的平分线相交于点D,
∴,
∵∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,
∴∠D=∠DCE-∠DBC=,
故答案为:20°.
【点睛】
此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.
三、解答题
1、
【解析】
【分析】
AD是的高,有;由知;CE是的角平分线可得;,;在中,.
【详解】
解:∵AD是的高
∴
∵
∴
∵CE是的角平分线
∴
∵
∴
∴在中,.
【点睛】
本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.
2、(1)1<BC<9;(2)60°
【解析】
【分析】
(1)根据AB、BC、AC构成三角形,利用三角形三边关系即可得解;
(2)根据平行线的性质可得,根据三角形外角性质可求即可.
【详解】
解:(1)∵,,
∴AC+AB=9,AC-AB=1,
∵AB、BC、AC构成三角形,
∴AC-AB<BC<AC+AB,
即1<BC<9;
(2)∵,
∴,
∵,
∴,
∵∠ACE是△ABC的外角,,
∴.
【点睛】
本题考查三角形三边关系,三角形外角性质,掌握三角形三边关系,三角形外角性质是解题关键.
3、角分线的定义;180°;两直线平行,同旁内角互补;90°;180°;90°
【解析】
【分析】
根据角平分线的定义,可得∠GMN=∠BMN,∠GNM=∠DNM. 再由ABCD,可得∠BMN+∠DNM=180°,从而得到∠GMN+∠GNM=90°.然后根据三角形的内角和定理,即可求解.
【详解】
证明:∵MG平分∠BMN,
∴∠GMN=∠BMN(角分线的定义),
同理∠GNM=∠DNM.
∵ABCD,
∴∠BMN+∠DNM=180°(两直线平行,同旁内角互补).
∴∠GMN+∠GNM=90°.
∵∠GMN+∠GNM+∠G=180°,
∴∠G=90°.
【点睛】
本题主要考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟练掌握相关知识点是解题的关键.
4、见解析
【解析】
【分析】
根据三角形内角和定理可得,从而可得结论.
【详解】
解:在中,,
在中,
∵
∴
∴ED⊥AB
【点睛】
本题主要考查了垂直的判定,证明是解答本题的关键.
5、 (1)∠1=40°
(2)∠E、∠AFE、∠MHE的数量关系为:∠AFE=∠E+∠MHE
(3)见解析
【解析】
【分析】
(1)根据平行线的性质得∠1=∠CHG,再由平角的定义得∠CHG+∠EHF+∠2=180°,进一步求出∠1的度数即可;
(2)由平行线的性质得∠AFE=∠CME,由三角形外角性质得∠CME=∠E+∠MHE,从而求得结论;
(3)设∠AFE=x,则∠BFH=90°﹣x,∠EFB=180°﹣x.由平行线的性质和三角形外角性质得∠HFT=∠BFT﹣∠BFH=x,故可得∠Q=15°+x.再证明∠CEH=210°﹣x.∠QEH=105°﹣x,由∠Q+∠QEH+∠QPE=180°得15°+x+105°﹣x+∠QPE=180°求得∠QPE=60°,从而∠QPE=∠H故可得结论.
(1)
∵AB∥CD,
∴∠1=∠CHG.
∵∠2=2∠1,
∴∠2=2∠CHG.
∵∠CHG+∠EHF+∠2=180°,
∴3∠CHG+60°=180°.
∴∠CHG=40°.
∴∠1=40°.
(2)
∠E、∠AFE、∠MHE的数量关系为:∠AFE=∠E+∠MHE,理由:
∵AB∥CD,
∴∠AFE=∠CME.
∵∠CME=∠E+∠MHE,
∴∠AFE=∠E+∠MHE.
(3)
证明:设∠AFE=x,则∠BFH=90°﹣x,∠EFB=180°﹣x.
∵AB∥CD,
∴∠BFT=∠ETF.
∵∠EFT=∠ETF,
∴∠EFT=∠BFT=∠EFB=90°﹣x.
∴∠HFT=∠BFT﹣∠BFH=x.
∵∠Q﹣∠HFT=15°,
∴∠Q=15°+x.
∵AB∥CD,
∴∠AFE+∠CEF=180°.
∴∠CEF=180°﹣x.
∴∠CEH=∠CEF+∠FEH=180°﹣x+30°=210°﹣x.
∵EQ平分∠CEH,
∴∠QEH=∠CEH=105°﹣x.
∵∠Q+∠QEH+∠QPE=180°,
∴15°+x+105°﹣x+∠QPE=180°.
∴∠QPE=60°.
∵∠H=60°,
∴∠QPE=∠H.
∴PQ∥FH.
【点睛】
本题属于几何变换综合题,考查了平行线的性质与判定,三角形内角和定理等知识,正确的识别图形是解题的关键.
冀教版七年级下册第九章 三角形综合与测试随堂练习题: 这是一份冀教版七年级下册第九章 三角形综合与测试随堂练习题,共22页。试卷主要包含了如图,直线l1l2,被直线l3,若三角形的两边a等内容,欢迎下载使用。
初中数学第九章 三角形综合与测试测试题: 这是一份初中数学第九章 三角形综合与测试测试题,共22页。试卷主要包含了定理等内容,欢迎下载使用。
冀教版七年级下册第九章 三角形综合与测试课后作业题: 这是一份冀教版七年级下册第九章 三角形综合与测试课后作业题,共22页。试卷主要包含了如图,在ABC中,点D等内容,欢迎下载使用。