初中数学冀教版七年级下册第九章 三角形综合与测试课时练习
展开
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课时练习,共25页。试卷主要包含了如图,在中,,,则外角的度数是,如图,图形中的的值是等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、当三角形中一个内角是另一个内角的2倍时,我们称此三角形为“特征三角形”,其中称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是( )A.80° B.90° C.100° D.120°2、以下列长度的各组线段为边,能组成三角形的是( )A.,, B.,,C.,, D.,,3、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:①∠CDF=30°;②∠ADB=50°;③∠ABD=22°;④∠CBN=108°其中正确说法的个数是( )A.1个 B.2个 C.3个 D.4个4、人字梯中间一般会设计一“拉杆”,这样做的道理是( )A.两点之间线段最短 B.三角形的稳定性C.两点确定一条直线 D.垂线段最短5、两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠F=45°,∠B=60°,AC与DE交于点M.若BC∥EF,则∠DMC的大小为( )A.100° B.105° C.115° D.120°6、如图,在中,,,则外角的度数是( )A.35° B.45° C.80° D.100°7、如图,图形中的的值是( )A.50 B.60 C.70 D.808、下列长度的三条线段能组成三角形的是( )A.3,4,8 B.5,6,11 C.5,6,10 D.4,5,99、小东要从下面四组木棒中选择一组制作一个三角形作品,你认为他应该选( )组.A.2,3,5 B.3,8,4 C.2,4,7 D.3,4,510、若一个三角形的两条边的长为5和7,那么第三边的长可能是( )A.2 B.10 C.12 D.13第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,线段,垂足为点,线段分别交、于点,,连结,.则的度数为______.2、如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是 _____.3、已知,在△ABC中,∠B=48°,∠C=68°,AD是BC边上的高,AE平分∠BAC,则∠DAE的度数为____.4、如图,已知∠A=60°,∠B=20°,∠C=30°,则∠BDC的度数为_____.5、如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=56°,∠2=29°,则∠A的度数为______度.三、解答题(5小题,每小题10分,共计50分)1、在△ABC中,∠A-∠B=30°,∠C=4∠B,求∠A、∠B、∠C的度数2、(1)如图,AB//CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE的度数;(2)如图,AB//CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数.(3)如图,P为(2)中射线BE上一点,G是CD上任一点,PQ平分∠BPG,GN//PQ,GM平分∠DGP,若∠B=30°,求∠MGN的度数.3、完成下面的证明已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE//BA,DF//CA.求证:∠A+∠B+∠C=180°.证明:∵DE//BA,∴∠3= ( ),∠2= ( ).∵DF//CA,∴∠1= ( ),∠BFD= ( ).∴∠2= ( ).∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).4、已知:AD//BC,点P为直线AB上一动点,点M在线段BC上,连接MP,∠BAD=α,∠APM=β,∠PMC=γ.(1)如图1,当点P在线段AB上时,若MP⊥AB,α=120°,则γ= ;(2)如图2,当点P在AB的延长线上时,写出α、β与γ之间的数量关系,并说明理由;(3)如图3,当点P在BA的延长线上时,请画出图形,证明出α、β与γ之间的数量关系.5、如图,BD是的角平分线,BE是的AC边上的中线.(1)若的周长为13,,,求AB的长.(2)若,,求的度数. -参考答案-一、单选题1、B【解析】【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.【详解】解:由题意得:α=2β,α=60°,则β=30°,180°-60°-30°=90°,故选B.【点睛】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.2、C【解析】【分析】根据三角形三条边的关系计算即可.【详解】解:A. ∵2+4=6,∴,,不能组成三角形;B. ∵2+5<9,∴,,不能组成三角形;C. ∵7+8>10,∴,,能组成三角形;D. ∵6+6<13,∴,,不能组成三角形;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.3、D【解析】【分析】根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵AD∥BC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC=2∠ADB,∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,解得∠ADB=50°,故②正确∵∠EAB=72°,∴∠DAN=180°-∠EAB=180°-72°=108°,∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确∵AD∥BC,∴∠CBN=∠DAN=108°,故④正确其中正确说法的个数是4个.故选择D.【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.4、B【解析】【分析】首先要考虑梯子中间设置“拉杆”的原因,是为了让梯子更加稳固,而更加稳固的原因是“拉杆”与梯子两边形成了三角形.【详解】人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加梯子的稳定性.故选:B.【点睛】本题考查三角形的稳定性,善于从生活中发现数学原理是解决本题的关键.5、B【解析】【分析】首先根据直角三角形两锐角互余可算出∠C和∠E的度数,再由“两直线平行,内错角相等”,可求出∠MDC的度数,在△CMD中,利用三角形内角和可求出∠CMD的度数.【详解】解:在△ABC和△DEF中,∠BAC=∠EDF=90°,∠F=45°,∠B=60°,∴∠C=90°-∠B=30°,∠E=90°-∠F=45°,∵BC∥EF,∴∠MDC=∠E=45°,在△CMD中,∠CMD=180°-∠C-∠MDC=105°.故选:B.【点睛】本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.6、C【解析】【分析】根据三角形的外角的性质直接求解即可,.【详解】解:∵在中,,,∴故选C【点睛】本题考查了三角形的外角的性质,掌握三角形的外角的性质是解题的关键.7、B【解析】【分析】根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.【详解】解:由题意得: ∴,∴,故选B.【点睛】本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.8、C【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,得,A、3+4=7<8,不能组成三角形,该选项不符合题意;B、5+6=11,不能够组成三角形,该选项不符合题意;C、5+6=11>10,能够组成三角形,该选项符合题意;D、4+5=9,不能够组成三角形,该选项不符合题意.故选:C.【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.9、D【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【详解】解:根据三角形的三边关系,得A、2+3=5,不能组成三角形,不符合题意;B、3+4<8,不能够组成三角形,不符合题意;C、2+4<7,不能够组成三角形,不符合题意;D、3+4>5,不能够组成三角形,不符合题意.故选:D.【点睛】本题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.10、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B符合题意,故选:B.【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.二、填空题1、270°##270度【解析】【分析】由题意易得,然后根据三角形内角和定理可进行求解.【详解】解:∵,∴,∴,∵,且,∴,同理可得:,∴,故答案为270°.【点睛】本题主要考查三角形内角和、垂直的定义及对顶角相等,熟练掌握三角形内角和、垂直的定义及对顶角相等是解题的关键.2、在三角形中,两边之和大于第三边【解析】【分析】根据三角形两边之和大于第三边进行求解即可.【详解】解:∵点A、B在直线l上,点C是直线l外一点,∴A、B、C可以构成三角形,∴由三角形三边的关系:在三角形中,两边之和大于第三边可以得到:CA+CB>AB,故答案为:在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,熟知三角形中两边之和大于第三边是解题的关键.3、10°##10度【解析】【分析】由三角形内角和求出的度数,然后利用角平分线的定义求出的度数,再根据AD⊥BC求出的度数,利用即可求出的度数.【详解】解:如图,∵∠B=48°,∠C=68°∵AE平分∠BAC∵AD⊥BC故答案为【点睛】本题主要考查三角形内角和定理和角平分线的定义,掌握三角形内角和定理和角平分线的定义是解题的关键.4、110°##110度【解析】【分析】延长BD交AC于点E,根据三角形的外角性质计算,得到答案.【详解】延长BD交AC于点E,∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,∴∠DEC=∠A+∠B=80°,则∠BDC=∠DEC+∠C=110°,故答案为:110°.【点睛】本题考查了三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和,作辅助线DE是解题的关键.5、27【解析】【分析】如图,∠3=∠1,由∠3=∠2+∠A计算求解即可.【详解】解:如图∵a∥b,∠1=56°∴∠3=∠1=56°∵∠3=∠2+∠A,∠2=29°∴∠A=∠3﹣∠2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.三、解答题1、,,【解析】【分析】根据三角形内角和定理,以及已知条件列三元一次方程组解方程求解即可【详解】在△ABC中,,∠A-∠B=30°,∠C=4∠B,①-②得④将③代入④解得,,,【点睛】本题考查了三角形内角和定理,解三元一次方程组,正确的计算是解题的关键.2、(1)∠ABE=40°;(2)∠ABE=30°;(3)∠MGN=15°.【解析】【分析】(1)过E作EMAB,根据平行线的判定与性质和角平分线的定义解答即可;(2)过E作EMAB,过F作FNAB,根据平行线的判定与性质,角平分线的定义以及解一元一次方程解答即可;(3)过P作PLAB,根据平行线的判定与性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义解答即可.【详解】解:(1)过E作EMAB,∵ABCD,∴CDEMAB,∴∠ABE=∠BEM,∠DCE=∠CEM,∵CF平分∠DCE,∴∠DCE=2∠DCF,∵∠DCF=30°,∴∠DCE=60°,∴∠CEM=60°,又∵∠CEB=20°,∴∠BEM=∠CEM﹣∠CEB=40°,∴∠ABE=40°;(2)过E作EMAB,过F作FNAB,∵∠EBF=2∠ABF,∴设∠ABF=x,∠EBF=2x,则∠ABE=3x,∵CF平分∠DCE,∴设∠DCF=∠ECF=y,则∠DCE=2y,∵ABCD,∴EMABCD,∴∠DCE=∠CEM=2y,∠BEM=∠ABE=3x,∴∠CEB=∠CEM﹣∠BEM=2y﹣3x,同理∠CFB=y﹣x,∵2∠CFB+(180°﹣∠CEB)=190°,∴2(y﹣x)+180°﹣(2y﹣3x)=190°, ∴x=10°,∴∠ABE=3x=30°;(3)过P作PLAB,∵GM平分∠DGP,∴设∠DGM=∠PGM=y,则∠DGP=2y,∵PQ平分∠BPG,∴设∠BPQ=∠GPQ=x,则∠BPG=2x,∵PQGN,∴∠PGN=∠GPQ=x,∵ABCD,∴PLABCD, ∴∠GPL=∠DGP=2y,∠BPL=∠ABP=30°,∵∠BPL=∠GPL﹣∠BPG,∴30°=2y﹣2x,∴y﹣x=15°,∵∠MGN=∠PGM﹣∠PGN=y﹣x,∴∠MGN=15°.【点睛】此题考查平行线的判定与性质,角平分线的定义,三角形的内角和定理,解题关键在于作辅助线和掌握判定定理.3、∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换【解析】【分析】先根据平行线的性质得出∠A=∠2,∠1=∠C,∠3=∠B,再由平角的定义即可得出结论.【详解】证明:∵DE//B∴∠3=∠B(两直线平行,同位角相等),∠2=∠BFD(两直线平行,内错角相等),∵DF//CA,∴∠1=∠C(两直线平行,同位角相等),∠A=∠BFD(两直线平行,同位角相等),∴∠2=∠A(等量代换).∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).故答案为:∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.4、 (1)150°(2)γ=α+β,理由见解析(3)图形见解析,α、β与γ之间的数量关系为:α+γ-β=180°【解析】【分析】(1)由AD//BC,α=120°可求出∠B=60°,由MP⊥AB得到∠MPB=90°,最后由γ=∠MPB+∠B=150°即可求解;(2)由AD//BC得到∠CBP=α,再由γ=∠CBP+∠P=α+β即可求解;(3)画出图形,由AD//BC,得到∠CMN=∠DNP=γ,∠PNA=180°-∠DNP=180°-γ,再在△PNA中,由三角形外角定理即可求解.(1)解:如下图所示:∵AD//BC,α=120°,∴∠B=60°,∵MP⊥AB,∴∠MPB=90°,∴γ=∠MPB+∠B=90°+60°=150°.故答案是:150°;(2)解:如下图所示:∵AD//BC,∴∠CBP=∠DAB=α,△MBP中,由三角形外角定理可知:∠CMP=∠CBP+∠P,∴γ=α+β.(3)解:当点P在BA的延长线上时,图形如下所示,α、β与γ之间的数量关系为:∵AD//BC,∴∠CMN=∠DNP=γ,∴∠PNA=180°-∠DNP=180°-γ,△PNA中,由三角形外角定理可知:∠DAB=∠PNA+∠P,∴α=180°-γ+β,故α、β与γ之间的数量关系为:α+γ-β=180°.【点睛】本题考查了平行线的性质,三角形的外角的性质,平角的定义,是基础题,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.5、(1)3;(2).【解析】【分析】(1)首先根据中线的性质得到,然后根据的周长为13,即可求出AB的长;(2)首先根据BD是的角平分线得到,然后根据三角形内角和定理即可求出的度数.【详解】(1)∵BE是的AC边上的中线,∴,又∵的周长为13,∴;(2)∵BD是的角平分线,∴,又∵,∴.【点睛】此题考查三角形中线和角平分线的概念,三角形内角和定理的运用,解题的关键是熟练掌握三角形中线和角平分线的概念,三角形内角和定理.
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试同步练习题,共20页。试卷主要包含了三角形的外角和是,若三角形的两边a,下列各图中,有△ABC的高的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试同步训练题,共21页。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试练习题,共21页。试卷主要包含了下列图形中,不具有稳定性的是等内容,欢迎下载使用。