![2022年精品解析冀教版七年级数学下册第九章 三角形专题训练试题(名师精选)第1页](http://m.enxinlong.com/img-preview/2/3/12767170/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版七年级数学下册第九章 三角形专题训练试题(名师精选)第2页](http://m.enxinlong.com/img-preview/2/3/12767170/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版七年级数学下册第九章 三角形专题训练试题(名师精选)第3页](http://m.enxinlong.com/img-preview/2/3/12767170/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
七年级下册第九章 三角形综合与测试课时练习
展开
这是一份七年级下册第九章 三角形综合与测试课时练习,共20页。试卷主要包含了已知△ABC的内角分别为∠A,如图,点D,如图,直线l1等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下列各组线段为边,能组成三角形的是( )A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm2、如图,一扇窗户打开后,用窗钩AB可将其固定( )A.三角形的稳定性B.两点之间线段最短C.四边形的不稳定性D.三角形两边之和大于第三边3、如果一个三角形的两边长都是6cm,则第三边的长不能是( )A.3cm B.6cm C.9cm D.13cm4、已知△ABC的内角分别为∠A、∠B、∠C,下列能判定△ABC是直角三角形的条件是( )A.∠A=2∠B=3∠C B.∠C=2∠B C.∠A+∠B=∠C D.∠A:∠B:∠C= =3:4:55、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为( )A.42° B.48° C.52° D.58°6、已知的三边长分别为a,b,c,则a,b,c的值可能分别是( )A.1,2,3 B.3,4,7C.2,3,4 D.4,5,107、如图,直线l1、l2分别与△ABC的两边AB、BC相交,且l1∥l2,若∠B=35°,∠1=105°,则∠2的度数为( )A.45° B.50° C.40° D.60°8、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )A.30° B.40° C.50° D.60°9、若一个三角形的两条边的长为5和7,那么第三边的长可能是( )A.2 B.10 C.12 D.1310、小东要从下面四组木棒中选择一组制作一个三角形作品,你认为他应该选( )组.A.2,3,5 B.3,8,4 C.2,4,7 D.3,4,5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一副直角三角板,∠CAB=∠FDE=90°,∠F=45°,∠C=60°,按图中所示位置摆放,点D在边AB上,EFBC,则∠ADF的度数为_____度.2、如图,在△ABC中,∠C=90°,AD是BC边上的中线,交BC于点D,CD=5cm,AC=12cm,则△ABD的面积是__________cm2.3、如图,在△ABC中,D是AC延长线上一点,∠A=50°,∠B=70°,则∠BCD=__________°.4、中,比大10°,,则______.5、如图,AE是△ABC的中线,BF是△ABE的中线,若△ABC的面积是20cm2,则S△ABF=_____cm2.三、解答题(5小题,每小题10分,共计50分)1、如图,将一副直角三角板的直角顶点C叠放在一起.(1)如图(1),若∠DCE=33°,则∠BCD= ,∠ACB= .(2)如图(1),猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A重合在一起,则∠DAB与∠CAE的数量关系为 .2、(1)如图所示,直角三角板和直尺如图放置.若,试求出的度数.(2)已知ABC的三边长a、b、c,化简.3、如图,已知在△ABC中,∠A=20°,∠B=60°,CD平分∠ACB交AB于点D,求∠CDB的度数.4、如图,Rt△ABC中,,D、E分别是AB、AC上的点,且.求证:ED⊥AB5、已知三角形的两边长分别是4cm和9cm,如果第三边长是奇数,求第三边的长 -参考答案-一、单选题1、A【解析】【分析】三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.【详解】解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意; 所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意; 所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意; 所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;故选A【点睛】本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.2、A【解析】【分析】由三角形的稳定性即可得出答案.【详解】一扇窗户打开后,用窗钩AB可将其固定,故选:A.【点睛】本题考查了三角形的稳定性,加上窗钩AB构成了△AOB,而三角形具有稳定性是解题的关键.3、D【解析】【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”,这样就可求出第三边长的范围,进而选出答案【详解】解:设它的第三条边的长度为xcm,依题意有 ,即,故只有D符合题意,故选:D.【点睛】本题考查的是三角形的三边关系,掌握三角形三边关系:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.4、C【解析】【分析】根据三角形内角和定理依次计算判断.【详解】解:A、设∠C=2x,则∠B=3x,∠A=6x,∵,∴,解得,∴∠A=6x=,∴△ABC不是直角三角形,故该选项不符合题意;B、当∠C=20°,∠B=10°时符合题意,但是无法判断△ABC是直角三角形,故该选项不符合题意;C、∵∠A+∠B=∠C,,∴,即△ABC是直角三角形,故该选项符合题意;D、设∠A=3x,∠B=4x,∠C=5x,∵,∴,解得,∴,∴△ABC不是直角三角形,故该选项不符合题意;故选:C.【点睛】此题考查了三角形内角和定理,熟记三角形内角和为180度并应用是解题的关键.5、B【解析】【分析】根据两直线平行,同位角相等可得,再由垂直的性质及三角形内角和定理即可得.【详解】解:∵,∴,∵,∴,∴,故选:B.【点睛】题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.6、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.7、C【解析】【分析】根据三角形内角和定理球场∠3的度数,利用平行线的性质求出答案.【详解】解:∵∠B=35°,∠1=105°,∴∠3=180-∠1-∠B=,∵l1∥l2,∴∠2=∠3=,故选:C..【点睛】此题考查三角形内角和定理,两直线平行内错角相等的性质,熟记三角形内角和等于180度及平行线的性质并熟练解决问题是解题的关键.8、A【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.9、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B符合题意,故选:B.【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.10、D【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【详解】解:根据三角形的三边关系,得A、2+3=5,不能组成三角形,不符合题意;B、3+4<8,不能够组成三角形,不符合题意;C、2+4<7,不能够组成三角形,不符合题意;D、3+4>5,不能够组成三角形,不符合题意.故选:D.【点睛】本题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.二、填空题1、75【解析】【分析】设CB与ED交点为G,依据平行线的性质,即可得到∠CGD的度数,再根据三角形外角的性质,得到∠BDE的度数,即可得∠ADF的度数.【详解】如图所示,设CB与ED交点为G,∵∠CAB=∠FDE=90°,∠F=45°,∠C=60°,∴∠E=90°-∠F=45°,∠B=90°-∠C=30°,∵EF∥BC,∴∠E=∠CGD=45°,又∵∠CGD是△BDG的外角,∴∠CGD=∠B+∠BDE,∴∠BDE=45°-30°=15°,∴∠ADF =180°-90°-∠BDE =75°故答案为:75.【点睛】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:两条平行线被第三条直线所截,同位角相等.2、30【解析】【分析】根据三角形的面积公式求出△ACD的面积,利用三角形中线的性质即可求解.【详解】解:∵∠C=90°,CD=5cm,AC=12cm,∴△ACD的面积为(cm2),∵AD是BC边上的中线,∴△ACD的面积=△ABD的面积为(cm2),故答案为:30.【点睛】本题考查了三角形的面积和三角形中线的性质,关键是根据三角形的中线把三角形分成面积相等的两部分解答.3、120【解析】【分析】根据三角形的外角性质,可得 ,即可求解.【详解】解:∵ 是 的外角,∴ ,∵∠A=50°,∠B=70°,∴ .故答案为:120【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.4、70°【解析】【分析】根据三角形内角和定理可得,由题意比大,可得,组成方程组求解即可.【详解】解:∵,∴,∵比大,∴,∴,解得:,故答案为:.【点睛】题目主要考查三角形内角和定理及二元一次方程组的应用,理解题意,列出代数式组成方程组是解题关键.5、5【解析】【分析】利用三角形的中线把三角形分成面积相等的两个三角形进行解答.【详解】解:∵AE是△ABC的中线,BF是△ABE的中线,∴S△ABF=S△ABC=×20=5cm2.故答案为:5.【点睛】本题考查了三角形的面积,能够利用三角形的中线把三角形分成面积相等的两个三角形的性质求解是解题的关键.三、解答题1、(1)57°,147°;(2)∠ACB=180°-∠DCE,理由见解析;(3)∠DAB+∠CAE=120°【解析】【分析】(1)根据角的和差定义计算即可.(2)利用角的和差定义计算即可.(3)利用特殊三角板的性质,角的和差定义即可解决问题.【详解】解:(1)由题意,;;故答案为:57°,147°. (2)∠ACB=180°-∠DCE, 理由如下:∵ ∠ACE=90°-∠DCE,∠BCD=90°-∠DCE, ∴ ∠ACB=∠ACE+∠DCE+∠BCD=90°-∠DCE+∠DCE+90°-∠DCE=180°-∠DCE. (3)结论:∠DAB+∠CAE=120°.理由如下:∵∠DAB+∠CAE=∠DAE+∠CAE+∠BAC+∠CAE=∠DAC+∠EAB,又∵∠DAC=∠EAB=60°,∴∠DAB+∠CAE=60°+60°=120°.故答案为:∠DAB+∠CAE=120°.【点睛】本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、(1)40°;(2)2b-2c【解析】【分析】(1)过F作FH∥AB,则AB∥FH∥CD,根据平行线的性质即可得到结论;(2)先根据三角形三边关系判断出a+b-c与b-a-c的符号,再把要求的式子进行化简,即可得出答案.【详解】(1)过点F作FH∥AB,∵AB∥CD,FH∥AB,∴AB∥CD∥FH,∴∠1=∠3,∠2=∠4,∴∠EFG=∠3+∠4=∠1+∠2,∵∠G=90°,∠E=30°,∴∠EFG=90°-∠E=90°-30°=60°,即∠1+∠2=60°,∵∠1=20°,∴∠2=60°-∠1=60°-20°=40°;(2)∵△ABC的三边长分别是a、b、c,∴a+b>c,b-a<c,∴a+b-c>0,b-a-c<0,∴|a+b-c|-|b-a-c|=a+b-c-(-b+a+c)=a+b-c+b-a-c=2b-2c.【点睛】本题考查了平行线的性质,三角形三边关系,用到的知识点是平行线的性质定理、三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b-c与b-a-c的符号.3、70°【解析】【分析】根据三角形内角和定理求出∠C的度数,根据角平分线的性质求出∠ACD的度数,再根据三角形的外角性质求得答案.【详解】解:在△ABC中,∠A=20°,∠B=60°,∴,∵CD平分∠ACB,∴,∴.【点睛】此题考查了三角形的内角和定理,角平分线定理,外角定理,熟记各定理并熟练应用是解题的关键.4、见解析【解析】【分析】根据三角形内角和定理可得,从而可得结论.【详解】解:在中,,在中, ∵ ∴ ∴ED⊥AB【点睛】本题主要考查了垂直的判定,证明是解答本题的关键.5、第三边长为7cm或9cm或11cm【解析】【分析】设三角形的第三边长为xcm,根据三角形的三边关系确定x的范围,然后根据题意可求解.【详解】解:设三角形的第三边长为xcm,由三角形的两边长分别是4cm和9cm可得:,即为,∵第三边长是奇数,∴或9或11.【点睛】本题主要考查三角形的三边关系,熟练掌握三角形的三边关系是解题的关键.
相关试卷
这是一份冀教版七年级下册第九章 三角形综合与测试练习题,共21页。
这是一份冀教版七年级下册第九章 三角形综合与测试课时训练,共22页。试卷主要包含了如图,是的中线,,则的长为,如图,,,,则的度数是等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试同步训练题,共21页。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)