![难点解析冀教版七年级数学下册第九章 三角形专题训练试题(名师精选)第1页](http://m.enxinlong.com/img-preview/2/3/12766998/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版七年级数学下册第九章 三角形专题训练试题(名师精选)第2页](http://m.enxinlong.com/img-preview/2/3/12766998/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版七年级数学下册第九章 三角形专题训练试题(名师精选)第3页](http://m.enxinlong.com/img-preview/2/3/12766998/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第九章 三角形综合与测试同步练习题
展开
这是一份冀教版七年级下册第九章 三角形综合与测试同步练习题,共21页。试卷主要包含了如图,直线l1,已知△ABC的内角分别为∠A等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )A.3cm B.6cm C.10cm D.12cm2、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )A.4 B.5 C.8 D.113、如图,在ABC中,点D、E分别是AC,AB的中点,且,则( )A.12 B.6 C.3 D.24、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )A.0根 B.1根 C.2根 D.3根5、如图,直线l1、l2分别与△ABC的两边AB、BC相交,且l1∥l2,若∠B=35°,∠1=105°,则∠2的度数为( )A.45° B.50° C.40° D.60°6、下列长度的三条线段能组成三角形的是( )A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,77、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )A. B. C. D.8、已知△ABC的内角分别为∠A、∠B、∠C,下列能判定△ABC是直角三角形的条件是( )A.∠A=2∠B=3∠C B.∠C=2∠B C.∠A+∠B=∠C D.∠A:∠B:∠C= =3:4:59、将一副三角板按不同位置摆放,下图中与互余的是( )A. B.C. D.10、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知点是射线上一点,过作交射线于点,交射线于点,给出下列结论:①是的余角;②图中互余的角共有3对;③的补角只有;④与互补的角共有3个,其中正确结论有______(把你认为正确的结论的序号都填上).2、△ABC中,已知∠C=90°,∠B=55°,则∠A=_____.3、如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是 _____.4、如图,AD是BC边上的中线,AB=5 cm,AD=4 cm,△ABD的周长是12 cm,则BC的长是____cm.5、如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是80,则△ABE的面积是________.三、解答题(5小题,每小题10分,共计50分)1、若AE是边BC上的高,AD是的平分线且交BC于点D.若,,分别求和的度数.2、如图,在ABC中,AC=6,BC=8,AD⊥BC于D,AD=5,BE⊥AC于E,求BE的长.3、平行线是平面几何中最基本、也是非常重要的图形.在解决某些几何问题时,若能根据问题的需要,添加适当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决问题:(1)如图(1),ABCD,试判断∠B,∠D与∠E的关系;(2)如图(2),已知ABCD,在∠ACD的角平分线上取两个点M、N,使得∠AMN=∠ANM,求证:∠CAM=∠BAN.4、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.(1)求∠F的度数;(2)若∠ABE=75°,求证:BE∥CF.5、在△ABC中,∠B=∠A+30°,∠C=40°,求∠A和∠B的度数. -参考答案-一、单选题1、C【解析】【分析】设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为cm,则 所以A,B,D不符合题意,C符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.2、C【解析】【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【详解】解:∵一个三角形的两边长分别为3和8,∴5<第三边长<11,则第三边长可能是:8.故选:C.【点睛】此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.3、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=S△ABC=6,然后利用S△BDE=S△ABD求解.【详解】解:∵点D为AC的中点,∴S△ABD=S△ABC=×12=6,∵点E为AB的中点,∴S△BDE=S△ABD=×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键. 三角形的中线把三角形分成面积相同的两部分.4、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.5、C【解析】【分析】根据三角形内角和定理球场∠3的度数,利用平行线的性质求出答案.【详解】解:∵∠B=35°,∠1=105°,∴∠3=180-∠1-∠B=,∵l1∥l2,∴∠2=∠3=,故选:C..【点睛】此题考查三角形内角和定理,两直线平行内错角相等的性质,熟记三角形内角和等于180度及平行线的性质并熟练解决问题是解题的关键.6、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】解:A、因为 ,所以不能组成三角形,故本选项不符合题意;B、因为 ,所以不能组成三角形,故本选项不符合题意;C、因为 ,所以能组成三角形,故本选项符合题意;D、因为 ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.7、C【解析】【分析】根据三角形的三边关系可得,再解不等式可得答案.【详解】解:设三角形的第三边为,由题意可得:,即,故选:C.【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.8、C【解析】【分析】根据三角形内角和定理依次计算判断.【详解】解:A、设∠C=2x,则∠B=3x,∠A=6x,∵,∴,解得,∴∠A=6x=,∴△ABC不是直角三角形,故该选项不符合题意;B、当∠C=20°,∠B=10°时符合题意,但是无法判断△ABC是直角三角形,故该选项不符合题意;C、∵∠A+∠B=∠C,,∴,即△ABC是直角三角形,故该选项符合题意;D、设∠A=3x,∠B=4x,∠C=5x,∵,∴,解得,∴,∴△ABC不是直角三角形,故该选项不符合题意;故选:C.【点睛】此题考查了三角形内角和定理,熟记三角形内角和为180度并应用是解题的关键.9、A【解析】【分析】根据平角的定义可判断A,D,根据同角的余角相等可判断B,根据三角形的外角的性质可判断C,从而可得答案.【详解】解:选项A:根据平角的定义得:∠α+90°+∠β=180°, ∴∠α+∠β=90°, 即∠α与∠β互余;故A符合题意;选项B:如图, 故B不符合题意;选项C:如图, 故C不符合题意;选项D: 故D不符合题意;故选A【点睛】本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.10、B【解析】【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.【详解】解:由三角形内角和知∠BAC=180°-∠2-∠1,∵AE为∠BAC的平分线,∴∠BAE=∠BAC=(180°-∠2-∠1).∵AD为BC边上的高,∴∠ADC=90°=∠DAB+∠ABD.又∵∠ABD=180°-∠2,∴∠DAB=90°-(180°-∠2)=∠2-90°,∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).故选:B【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.二、填空题1、①④##④①【解析】【分析】根据垂直定义可得∠BAC=90°,∠ADC=∠ADB=∠CAE=90°,结合三角形的内角和,然后再根据余角定义和补角定义逐一进行分析即可.【详解】解: , 是的余角;故①符合题意; , 互为余角,互为余角, ,互为余角,所以图中互余的角共有4对,故②不符合题意; 与互补;∵∠1+∠DAC=90°,∠BAD+∠DAC=90°, ∴∠1=∠BAD, ∵∠BAD+∠DAE=180°, ∴∠1+∠DAE=180°, ∴∠1与∠DAE互补, 故③不符合题意; , 所以与互补的角有 共3个,故④符合题意;所以正确的结论有:①④故答案为:①④【点睛】本题考查的是垂直的定义,互余,互补的含义,三角形的内角和定理,掌握“互为余角的两个角之和为 互为补角是两个角之和为”是解本题的关键.2、35°【解析】【分析】根据三角形的内角和定理列式计算即可得解.【详解】∵∠C=90°,∠B=55°,∴∠A=180°-∠B-∠C=180°-55°-90°=35°.故答案为:35°.【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理并准确计算是解题的关键.3、在三角形中,两边之和大于第三边【解析】【分析】根据三角形两边之和大于第三边进行求解即可.【详解】解:∵点A、B在直线l上,点C是直线l外一点,∴A、B、C可以构成三角形,∴由三角形三边的关系:在三角形中,两边之和大于第三边可以得到:CA+CB>AB,故答案为:在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,熟知三角形中两边之和大于第三边是解题的关键.4、6【解析】【分析】根据AD是BC边上的中线,得出为的中点,可得,根据条件可求出.【详解】解:AD是BC边上的中线,为的中点,,,△ABD的周长是12cm,,,故答案是:6.【点睛】本题考查了三角形的中线,解题的关键利用中线的性质得出为的中点.5、20【解析】【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可解答.【详解】解:∵AD是BC上的中线,∴S△ABD=S△ACD=S△ABC,∵BE是△ABD中AD边上的中线,∴S△ABE=S△BED=S△ABD,∴S△ABE=S△ABC,∵△ABC的面积是80,∴S△ABE=×80=20.故答案为:20.【点睛】本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.三、解答题1、;【解析】【分析】根据△AEC的内角和定理可得:,根据角平分线的性质可得,根据△ABC的内角和定理可得∠BAC,又因为,,即可得解.【详解】解:∵AE是边BC上的高∴∴在中,有又∵∴∵AD是的平分线∴∵在中,有已知,∴∴∴【点睛】本题考查了三角形内角和定理及角平分线的性质,熟悉这些知识点,灵活应用等量代换是解决本题的关键.2、.【解析】【分析】根据三角形面积公式计算即可.【详解】解:.【点睛】本题考查三角形面积的计算,利用等积法是解题关键.3、(1)∠BED=∠B+∠D;(2)证明见详解.【解析】【分析】(1)作EF∥AB,证明AB∥EF∥CD,得到∠B=∠BEF,∠D=∠DEF,即可证明∠BED=∠B+∠D;(2)根据(1)结论得到∠N=∠BAN+∠DCN,进而得到∠AMN=∠BAN+∠DCN,根据三角形外角定理得到∠AMN=∠ACM+∠CAM,∠BAN+∠DCN=∠ACM+∠CAM,再根据∠DCN=∠CAN,即可证明∠CAM=∠BAN.【详解】解:如图1,作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∵∠BED=∠BEF+∠DEF,∴∠BED=∠B+∠D;(2)证明:∵AB∥CD,∴由(1)得∠N=∠BAN+∠DCN,∵∠AMN=∠ANM,∴∠AMN=∠BAN+∠DCN,∵∠AMN是△ACM外角,∴∠AMN=∠ACM+∠CAM,∴∠BAN+∠DCN=∠ACM+∠CAM,∵CN平分∠ACD,∴∠DCN=∠CAN,∴∠CAM=∠BAN.【点睛】本题考查了平行线的性质,角平分线的定义,三角形的外角定理等知识,熟知相关定理并根据题意添加辅助线进行角的转化是解题关键.4、(1);(2)证明见详解..【解析】【分析】(1)根据三角形内角和及等腰三角形的性质可得,,由各角之间的关系及三角形内角和定理可得,,最后由平行线的性质即可得出;(2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明.【详解】解:(1)∵,,,∴,,∵,∴,,∴,∴,∵,∴,,∴;(2)∵,,∴,由(1)可得,∴,∴(内错角相等,两直线平行).【点睛】题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.5、,【解析】【分析】利用已知结合三角形内角和定理即可求解.【详解】解:∵,∴.∵,∴,∴,∴.【点睛】本题考查三角形内角和定理,正确得出是解题关键.
相关试卷
这是一份冀教版七年级下册第九章 三角形综合与测试练习题,共21页。
这是一份冀教版七年级下册第九章 三角形综合与测试课时训练,共22页。试卷主要包含了如图,是的中线,,则的长为,如图,,,,则的度数是等内容,欢迎下载使用。
这是一份数学七年级下册第九章 三角形综合与测试同步达标检测题,共21页。试卷主要包含了如图,在ABC中,点D,如图,,,则的度数是,如图,已知,,,则的度数为等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)