初中数学冀教版七年级下册第九章 三角形综合与测试达标测试
展开
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试达标测试,共22页。
冀教版七年级数学下册第九章 三角形重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为( )A.110 B.100 C.55 D.452、若一个三角形的三个外角之比为3:4:5,则该三角形为( )A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形3、如图,,,则的度数是( )A.55° B.35° C.45° D.25°4、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )A.50° B.60° C.40° D.30°5、如图,在中,,,将沿直线翻折,点落在点的位置,则的度数是( ) A.30° B.45° C.60° D.75°6、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )A.6cm B.5cm C.3cm D.1cm7、下列长度的三条线段能组成三角形的是( )A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,78、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为( )A.32° B.33° C.34° D.38°9、以下各组线段长为边,能组成三角形的是( )A.,, B.,, C.,, D.,,10、以下长度的三条线段,能组成三角形的是( )A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,9第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知a,b,c是的三边长,满足,c为奇数,则______.2、如图,已知AE∥BD,∠1=88°,∠2=28°.则∠C=_____.3、如图,将△ABC平移到△A’B’C’的位置(点B’在AC边上),若∠B=55°,∠C=100°,则∠AB’A’的度数为_____°.4、如图,在面积为48的等腰中,,,P是BC边上的动点,点P关于直线AB、AC的对称点外别为M、N,则线段MN的最大值为______.5、一个零件的形状如图,按规定∠A=90°,∠B=∠D=25°,判断这个零件是否合格,只要检验∠BCD的度数就可以了.量得∠BCD=150°,这个零件______(填“合格”不合格”).三、解答题(5小题,每小题10分,共计50分)1、如图,在中(),,边上的中线把的周长分成和两部分,求和的长.2、如图,在△ABC中,∠ABC=30°,∠C=80°,AD是△ABC的角平分线,BE是△ABD中AD边上的高,求∠ABE的度数.3、如图,AD是的高,CE是的角平分线.若,,求的度数.4、已知射线是的外角平分线.(1)如图1,当射线与的延长线能交于一点时,则 (选填“>”“<”或“=”),并说明理由;(2)如图2,当时,请判断与的数量关系,并证明.5、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系. -参考答案-一、单选题1、B【解析】【分析】根据三角形的外角的性质计算即可.【详解】解:由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,故选:B.【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.2、A【解析】【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可.【详解】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x=360°,解得,x=30°,∴三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,∴此三角形为直角三角形,故选:A.【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.3、D【解析】【分析】根据三角形的内角和定理和对顶角相等求解即可.【详解】解:设AD与BC相交于O,则∠COD=∠AOB,∵∠C+∠COD+∠D=180°,∠A+∠AOB=∠B=180°,∠C=∠A=90°,∴∠D=∠B=25°,故选:D.【点睛】本题考查三角形的内角和定理、对顶角相等,熟练掌握三角形的内角和是180°是解答的关键.4、A【解析】【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将△OAB绕点O逆时针旋转80°得到△OCD, ∠A的度数为110°,∠D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.5、C【解析】【分析】设交于点,是射线上的一点,设,根据三角形的外角的性质可得,进而根据平角的定义即可求得,即可求得.【详解】如图,设交于点,是射线上的一点,折叠,设即故选C【点睛】本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.6、C【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:设第三边长为xcm,根据三角形的三边关系可得:3-2<x<3+2,解得:1<x<5,只有C选项在范围内.故选:C.【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.7、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】解:A、因为 ,所以不能组成三角形,故本选项不符合题意;B、因为 ,所以不能组成三角形,故本选项不符合题意;C、因为 ,所以能组成三角形,故本选项符合题意;D、因为 ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.8、A【解析】【分析】由折叠的性质可知,再由三角形外角的性质即可求出的大小,再次利用三角形外角的性质即可求出的大小.【详解】如图,设线段和线段交于点F.由折叠的性质可知.∵,即,∴.∵,即,∴.故选A.【点睛】本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.9、B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形,故不符合题意;B、4+6>8,能组成三角形,故符合题意;C、5+6<12,不能够组成三角形,故不符合题意;D、3+3=6,不能组成三角形,故不符合题意.故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.10、C【解析】【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.8>7,能组成三角形,符合题意;D、3+5<9,不能组成三角形,不符合题意.故选:C.【点睛】本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.二、填空题1、7【解析】【分析】绝对值与平方的取值均0,可知,,可得a、b的值,根据三角形三边关系求出c的取值范围,进而得到c的值.【详解】解:,由三角形三边关系可得为奇数故答案为:7.【点睛】本题考查了绝对值、平方的非负性,三角形的三边关系等知识点.解题的关键是确定所求边长的取值范围.2、60°【解析】【分析】根据平行线的性质可得∠3=88°,根据三角形的外角性质即可求得∠C【详解】解:∵∴∠1=∠3=88°,∵∠3=∠2+∠C,∴∠C=∠3﹣∠2=88°﹣28°=60°,故答案为:60°.【点睛】本题考查了平行线的性质与判定,三角形的外角的性质,求得∠3=88°是解题的关键.3、25【解析】【分析】先根据三角形内角和定理求出∠A=25°,然后根据平移的性质得到,则.【详解】解:∵∠B=55°,∠C=100°,∴∠A=180°-∠B-∠C=25°,由平移的性质可得,∴,故答案为:25.【点睛】本题主要考查了三角形内角和定理,平移的性质,平行线的性质,解题的关键在于能够熟练掌握平移的性质.4、19.2【解析】【分析】点P关于直线AB、AC的对称点分别为M、N,根据三角形三边关系可得,当点P与点B或点C重合时,P、M、N三点共线,MN最长,由轴对称可得,,再由三角形等面积法即可确定MN长度.【详解】解:如图所示:点P关于直线AB、AC的对称点分别为M、N,由图可得:,当点P与点B或点C重合时,如图所示,MN交AC于点F,此时P、M、N三点共线, MN最长,∴,,∵等腰面积为48,,∴,,∴,故答案为:.【点睛】题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.5、不合格【解析】【分析】连接AC并延长,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可进行判定.【详解】解:如图,连接AC并延长,由三角形的外角性质可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴这个零件不合格.故答案为:不合格.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出两个三角形是解题的关键.三、解答题1、,【解析】【分析】由题意可得,,由中线的性质得,故可求得,即可求得.【详解】由题意知,,∵,D为BC中点∴∴即则BC=24,CD=BD=12则且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.2、55°【解析】【分析】先根据三角形内角和定理及角平分线的性质求出∠BAD度数,由AE⊥BE可求出∠AEB=90°,再由三角形的内角和定理即可解答.【详解】解:∵∠ABC=30°,∠C=80°,∴∠BAC=180°-30°-80°=70°,∵AD是∠BAC的平分线,∴∠BAD=×70°=35°,∵AE⊥BE,∴∠AEB=90°,∴∠ABE=180°-∠AEB-∠BAE=180°-90°-35°=55°.【点睛】本题考查的是角平分线的定义,高的定义及三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.3、【解析】【分析】AD是的高,有;由知;CE是的角平分线可得;,;在中,.【详解】解:∵AD是的高∴∵∴∵CE是的角平分线∴∵∴∴在中,.【点睛】本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.4、(1)>,见解析;(2)∠BAC=∠B,见解析【解析】【分析】(1)延长BA与射线CD交于点F,根据CD平分∠ACE,可得∠ACD=∠ECD,根据三角形外角性质可得∠BAC=∠ECD+∠AFC,∠ECD=∠B+∠AFC,得出∠BAC=∠B+2∠AFC即可;(2)根据CD∥BA,可得∠BAC=∠ACD,∠B=∠ECD,根据CD平分∠ACE,解得∠ACD=∠ECD即可.【详解】解:(1)>理由:如图,延长BA与射线CD交于点F,∵CD平分∠ACE,∴∠ACD=∠ECD,∵∠BAC=∠ACD+∠AFC=∠ECD+∠AFC,∠ECD=∠B+∠AFC,∴∠BAC=∠B+2∠AFC,∴∠BAC>∠B;(2)∠BAC=∠B,证明:∵CD∥BA,∴∠BAC=∠ACD,∠B=∠ECD,∵CD平分∠ACE,∴∠ACD=∠ECD,∴∠BAC=∠B.【点睛】本题考查三角形的外角性质,角平分线定义,掌握三角形的外角性质,角平分线定义是解题关键.5、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.【解析】【分析】(1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;(2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;(3)设∠BAD=x,仿照(2)的解法计算.【详解】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:设∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x,∠DAE=∠BAC﹣∠BAD=90°﹣x,∴∠ADE=∠AED=,∴∠CDE=45°+x﹣=x,∴∠BAD=2∠CDE;(3)设∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x,∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,∴∠ADE=∠AED=∠C+x,∴∠CDE=∠B+x﹣(∠C+x)=x,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试当堂达标检测题,共22页。试卷主要包含了若三角形的两边a等内容,欢迎下载使用。
这是一份七年级下册第九章 三角形综合与测试同步训练题,共25页。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课后练习题,共22页。试卷主要包含了若三角形的两边a等内容,欢迎下载使用。