搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练冀教版七年级数学下册第九章 三角形专项练习试题(精选)

    2022年最新强化训练冀教版七年级数学下册第九章 三角形专项练习试题(精选)第1页
    2022年最新强化训练冀教版七年级数学下册第九章 三角形专项练习试题(精选)第2页
    2022年最新强化训练冀教版七年级数学下册第九章 三角形专项练习试题(精选)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版七年级下册第九章 三角形综合与测试综合训练题

    展开

    这是一份初中数学冀教版七年级下册第九章 三角形综合与测试综合训练题,共24页。试卷主要包含了如图,点B等内容,欢迎下载使用。
    冀教版七年级数学下册第九章 三角形专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、已知三角形的两边长分别为,则下列长度的四条线段中能作为第三边的是(       A. B. C. D.2、当三角形中一个内角是另一个内角的2倍时,我们称此三角形为“特征三角形”,其中称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是(       A.80° B.90° C.100° D.120°3、如图,BD的角平分线,,交AB于点E.若,则的度数是(       A.10° B.20° C.30° D.50°4、下列长度的三条线段能组成三角形的是(       A.1,6,6 B.2,3,5 C.3,4,8 D.5,6,115、如图,在中,,将绕点C逆时针旋转90°得到,则的度数为(       A.105° B.120° C.135° D.150°6、如图,点BGC在直线FE上,点D在线段AC上,下列是ADB的外角的是(  )A.∠FBA B.∠DBC C.∠CDB D.∠BDG7、下列长度的三条线段能组成三角形的是(  )A.3   4   8 B.4   4   10 C.5   6   10 D.5   6   118、以下列长度的各组线段为边,能组成三角形的是(     A. B.C. D.9、如图,将BC边对折,使点B与点C重合,DE为折痕,若,则       ).A.45° B.60° C.35° D.40°10、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为(       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一个三角形的其中两个内角为,则这个第三个内角的度数为______.2、如图,ADBC边上的中线,AB=5 cm,AD=4 cm,△ABD的周长是12 cm,则BC的长是____cm3、如图,的平分线交于点上的一点,的平分线交于点,且,下列结论:平分③与互余的角有个;④若,则其中正确的是________.(请把正确结论的序号都填上)4、如图,在△ABC中,DAC延长线上一点,∠A=50°,∠B=70°,则∠BCD=__________°.5、如图,将绕点B逆时针旋转,得到,若点E恰好落在的延长线上,则__________三、解答题(5小题,每小题10分,共计50分)1、已知直线ABCDEF是截线,点M在直线ABCD之间.(1)如图1,连接GMHM.求证:(2)如图2,在的角平分线上取两点MQ,使得.请直接写出之间的数量关系;(3)如图3,若射线GH平分,点NMH的延长线上,连接GN,若,求的度数.2、如图,ADEF.请从以下三个条件:①平分,②,③中选择一个作为条件,使DGAB,你选的条件是______(填写序号).并说明理由. 3、如图,将一副直角三角板的直角顶点C叠放在一起.(1)如图(1),若∠DCE=33°,则∠BCD      ,∠ACB      (2)如图(1),猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A重合在一起,则∠DAB与∠CAE的数量关系为      4、已知,如图,在中,点EF分别为边上的动点,相交于点D(1)如果分别为上的高线时,求的度数;(2)如果分别平分时,求的度数.5、如图,ABCD,∠BMN与∠DNM的平分线相交于点G完成下面的证明:MG平分∠BMN∴∠GMNBMN              ),同理∠GNMDNMABCD∴∠BMN+∠DNM=________(         ).∴∠GMN+∠GNM=________.∵∠GMN+∠GNM+∠G=________,∴∠G=________. -参考答案-一、单选题1、C【解析】【分析】根据三角形的三边关系可得,再解不等式可得答案.【详解】解:设三角形的第三边为,由题意可得:故选:C.【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.2、B【解析】【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.【详解】解:由题意得:α=2β,α=60°,则β=30°,180°-60°-30°=90°,故选B.【点睛】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.3、B【解析】【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD∴∠ABD=∠BDC−∠A=50°−30°=20°,BDABC的角平分线,∴∠DBC=∠ABD=20°,DEBC∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.4、A【解析】【分析】根据构成三角形的条件逐项分析判断即可.三角形的任意两边之和大于第三边,任意两边之差小于第三边,根据原理分别计算两条较短边的和与最长边比较,再逐一分析即可.【详解】解:A. 1+6>6,能组成三角形,故该选项正确,符合题意;B. 2+3=5,不能组成三角形,故该选项不正确,不符合题意;       C. 3+4<8,不能组成三角形,故该选项不正确,不符合题意;       D. 5+6=11,不能组成三角形,故该选项不正确,不符合题意;故选A【点睛】本题考查了判断构成三角形的条件,解题的关键是掌握构成三角形的条件.5、B【解析】【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.6、C【解析】【分析】根据三角形的外角的概念解答即可.【详解】解:A.∠FBA是△ABC的外角,故不符合题意;B. ∠DBC不是任何三角形的外角,故不符合题意;C.∠CDB是∠ADB的外角,符合题意;D. ∠BDG不是任何三角形的外角,故不符合题意;故选:C.【点睛】本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.7、C【解析】【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+48∴不能组成三角形,故本选项不符合题意;B.∵4+410∴不能组成三角形,故本选项不符合题意;C.∵5+610∴能组成三角形,故本选项符合题意;D.∵5+6=11∴不能组成三角形,故本选项不符合题意;故选:C【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.8、C【解析】【分析】根据三角形三条边的关系计算即可.【详解】解:A. ∵2+4=6,∴不能组成三角形;B. ∵2+5<9,∴不能组成三角形;C. ∵7+8>10,∴能组成三角形;D. ∵6+6<13,∴不能组成三角形;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.9、A【解析】【分析】由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.【详解】解:由折叠得∠B=∠BCD∵∠A+∠B+∠ACB=180°∴65°+2∠B+25°=180°∴∠B=45°故选:A.【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.10、A【解析】【分析】根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解【详解】解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.二、填空题1、60°##60度【解析】【分析】依题意,利用三角形内角和为:,即可;【详解】由题得:一个三角形的内角和为:;又已知两个其中的内角为:∴ 第三个角为:故填:【点睛】本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;2、6【解析】【分析】根据ADBC边上的中线,得出的中点,可得,根据条件可求出【详解】解:ADBC边上的中线,的中点,,△ABD的周长是12cm,故答案是:6.【点睛】本题考查了三角形的中线,解题的关键利用中线的性质得出的中点.3、①②【解析】【分析】BDBCBD平分∠GBE,可判断①正确;由CB平分∠ACFAECF及①的结论可判断②正确;由前两个的结论可对③作出判断;由AECFACBG、三角形外角的性质可求得∠BDF,从而可对④作出判断.【详解】BD平分∠GBE∴∠EBD=∠GBD=GBEBDBC∴∠GBD+∠GBC=∠CBD=90°∴∠DBE+∠ABC=90°∴∠GBC=∠ABCBC平分∠ABG故①正确CB平分∠ACF∴∠ACB=∠GCBAECF∴∠ABC=∠GCB∴∠ACB=∠GCB=∠ABC=∠GBCACBG故②正确∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC∴与∠DBE互余的角共有4个 故③错误ACBG,∠A=α∴∠GBE=αAECF∴∠BGD=180°-∠GBE=180°−α∴∠BDF=∠GBD+∠BGD=故④错误即正确的结论有①②故答案为:①②【点睛】本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键.4、120【解析】【分析】根据三角形的外角性质,可得 ,即可求解.【详解】解:∵ 的外角,∵∠A=50°,∠B=70°,故答案为:120【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.5、85【解析】【分析】利用旋转的性质得出旋转前后对应线段相等、对应角相等即可.【详解】解:∵将△ABC绕点B逆时针旋转95°,∴∠ABE=95°,ABBE,∠CAB=∠EABBE∴∠E=∠BAE∴∠BAE+∠CAB=∠BAE+∠E=180°−∠ABE=180°−95°=85°,故答案为:85.【点睛】本题主要考查了旋转的性质以及三角形内角和定理的应用,熟记旋转的性质是解决问题的关键.三、解答题1、 (1)见解析(2)∠GQH+∠GMH=180°,理由见解析(3)60°【解析】【分析】(1)过点MMIABEF于点I,可得∠AGM=∠GMI,再由ABCD,可得MICD,从而得到∠CHM=∠HMI,即可求证;(2)过点MMPABEF于点P,同(1)可得到∠PMH=∠CHM,∠GMP=∠AGM,再由MH平分∠GHC,可得∠PHM=∠CHM,从而得到∠PHM=∠PMH,再由,可得∠HGQ=∠GMP,从而得到∠GMH=∠HGQ+∠PHM,然后根据三角形的内角和定理,即可求解;(3)过点MMKABEF于点K,设 ,可得 ,同(1),可得∠GMH=∠GMK+HMK= ,再由,可得,然后根据三角形的内角和定理,可得 ,再由ABCD,可得∠AGH+∠CHG=180°,即可求解.(1)证明:如图,过点MMIABEF于点IMIAB∴∠AGM=∠GMIABCDMICD∴∠CHM=∠HMI∴∠GMH=∠HMI +∠GMI= ∠AGM +∠CHM(2)解:∠GQH+∠GMH=180°,理由如下:如图,过点MMPABEF于点PMPAB∴∠GMP=∠AGMABCDMPCD∴∠PMH=∠CHMMH平分∠GHC∴∠PHM=∠CHM∴∠PHM=∠PMH∴∠HGQ=∠GMP∵∠GMH=∠GMP+∠PMH∴∠GMH=∠HGQ+∠PHM∵∠GQH+∠HGQ+∠PHM=180°,∴∠GQH+∠GMH=180°(3)解:如图,过点MMKABEF于点KGH平分∠BGMMKABABCDMKCD∴∠HMK=∠CHM∴∠GMH=∠GMK+HMK=,即∵∠GMH+∠N+∠MGN=180°,解得:ABCD   ∴∠AGH+∠CHG=180°,∴∠MHG=60°.【点睛】本题主要考查了平行的判定和性质,三角形的内角和定理,角平分线的定义,做适当辅助线,构造平行线,并熟练掌握平行的判定和性质定理,三角形的内角和定理,角平分线的定义是解题的关键.2、①或③,理由见解析.【解析】【分析】首先根据ADEF,得到,然后根据平行线的判定定理逐个判断求解即可.【详解】解:∵ADEF当选择条件①平分时,DGAB,故选择条件①可以使DGAB当选择条件②时,,同旁内角相等,不能证明两直线平行,∴选择条件②不可以使DGAB当选择条件③时,DGAB,故选择条件③可以使DGAB综上所述,使DGAB,可以选的条件是①或③.故答案为:①或③.【点睛】此题考查了平行线的性质和判定定理,三角形外角的性质和角平分线的概念,解题的关键是熟练掌握平行线的性质和判定定理.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.3、(1)57°,147°;(2)∠ACB=180°-∠DCE,理由见解析;(3)∠DAB+CAE=120°【解析】【分析】(1)根据角的和差定义计算即可.(2)利用角的和差定义计算即可.(3)利用特殊三角板的性质,角的和差定义即可解决问题.【详解】解:(1)由题意,故答案为:57°,147°.       (2)∠ACB=180°-∠DCE     理由如下:   ACE=90°-∠DCE,∠BCD=90°-∠DCE   ACB=∠ACE+∠DCE+∠BCD=90°-∠DCE+∠DCE+90°-∠DCE=180°-∠DCE       (3)结论:∠DAB+∠CAE=120°.理由如下:∵∠DAB+∠CAE=∠DAE+∠CAE+∠BAC+∠CAE=∠DAC+∠EAB又∵∠DAC=∠EAB=60°,∴∠DAB+∠CAE=60°+60°=120°.故答案为:∠DAB+∠CAE=120°.【点睛】本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4、(1)100゜;(2)130゜【解析】【分析】(1)利用直角三角形两锐角互余、三角形外角的性质,可求得结果;(2)由角平分线的性质及三角形内角和定理可求得∠EBC+∠FCB的度数,从而可求得结果的度数.【详解】(1)∵BEACCFAB∴∠AEB=∠CFB=90゜∴∠ABE=90゜ -∠A=10゜∴∠BDC=∠CFB+∠ABE=90゜+10゜=100゜(2)∵BECF分别平分∠ABC、∠ACB∵∠ABC+∠ACB=180゜ -∠A=100゜【点睛】本题考查了三角形内角和定理、三角形外角的性质、角平分线的性质,熟练运用它们是解答的关键.5、角分线的定义;180°;两直线平行,同旁内角互补;90°;180°;90°【解析】【分析】根据角平分线的定义,可得∠GMNBMN,∠GNMDNM. 再由ABCD,可得∠BMN+∠DNM=180°,从而得到∠GMN+∠GNM=90°.然后根据三角形的内角和定理,即可求解.【详解】证明:∵MG平分∠BMN∴∠GMNBMN(角分线的定义),同理∠GNMDNMABCD∴∠BMN+∠DNM=180°(两直线平行,同旁内角互补).∴∠GMN+∠GNM=90°.∵∠GMN+∠GNM+∠G=180°,∴∠G=90°.【点睛】本题主要考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟练掌握相关知识点是解题的关键. 

    相关试卷

    初中冀教版第九章 三角形综合与测试课后测评:

    这是一份初中冀教版第九章 三角形综合与测试课后测评,共23页。

    初中数学冀教版七年级下册第九章 三角形综合与测试课时练习:

    这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课时练习,共19页。

    初中数学第九章 三角形综合与测试课时作业:

    这是一份初中数学第九章 三角形综合与测试课时作业,共21页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map