![精品试卷冀教版八年级数学下册第十九章平面直角坐标系定向攻克试题(名师精选)第1页](http://m.enxinlong.com/img-preview/2/3/12766054/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版八年级数学下册第十九章平面直角坐标系定向攻克试题(名师精选)第2页](http://m.enxinlong.com/img-preview/2/3/12766054/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版八年级数学下册第十九章平面直角坐标系定向攻克试题(名师精选)第3页](http://m.enxinlong.com/img-preview/2/3/12766054/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题,共21页。试卷主要包含了点A关于轴的对称点的坐标是,在平面直角坐标系中,点A,在平面直角坐标系中,点等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点A的坐标为,则点A关于x轴对称的点的坐标为( )A. B. C. D.2、平面直角坐标系中,下列在第二象限的点是( )A. B. C. D.3、点与点Q关于y轴对称,则点Q的坐标为( )A. B. C. D.4、点A(4,−8)关于轴的对称点的坐标是( )A. B. C. D.5、在平面直角坐标系中,所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、在平面直角坐标系中,点A(2,3)关于x轴的对称点为点B,则点B的坐标是( )A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)8、在平面直角坐标系中,点(2,﹣5)关于x轴对称的点的坐标是( )A.(2,5) B.(﹣2,5) C.(﹣2,﹣5) D.(2,﹣5)9、在平面直角坐标系的第二象限内有一点P,点P到x轴的距离为2,到y轴的距离为3,则点P的坐标是( )A. B. C. D.10、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )A.第四象限 B.第三象限 C.第二象限 D.第一象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点M的坐标是,则点M到x轴的距离是_______.2、若|2x﹣4|+(y+3)2=0,点A(x,y)关于x轴对称的点为B,点B关于y轴对称的点为C,则点C的坐标是______.3、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,则D的坐标为_______,连接AC,BD.在y轴上存在一点P,连接PA,PB,使S四边形ABDC,则点P的坐标为_______.4、在平面直角坐标系中,点A的坐标为,将点A向上平移两个单位后刚好落在x轴上,则m的值为______.5、如图,已知在平面直角坐标系中,点A(2,﹣2)、点B(﹣3,4)、点C(﹣5,0),那么△ABC的面积等于 ___.三、解答题(5小题,每小题10分,共计50分)1、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC关于y轴对称的△A′B′C′.(3)求△ABC的面积 .2、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.(1)请在图中标出点A和点C;(2)△ABC的面积是 ;(3)在y轴上有一点D,且S△ACD=S△ABC,则点D的坐标为 .3、如图,线段AB的两个端点的坐标分别为,,线段AB与线段,关于直线m(直线m上各点的横坐标都为5)对称,线段,与线段关于直线n(直线n上各点的横坐标都为9)对称.(1)在图中分别画出线段、;(2)若点关于直线m的对称点为,点关于直线n的对称点为,则点的坐标是 .4、如图,已知在平面直角坐标系中xOy中,点A(﹣4,0),点B(2n﹣10,m+2),当点A向右平移m(m>0)个单位,再向上平移n(n>0)个单位时,可与点B重合.(1)求点B的坐标;(2)将点B向右平移3个单位后得到的点记为点C,点C恰好在直线x=b上,点D在直线x=b上,当△BCD是等腰三角形时,求点D的坐标.5、如图,已知△ABC的三个顶点分别为A(-2,4)、B(-6,0)、C(-1,0).(1)将△ABC沿y轴翻折,画出翻折后图形△A1B1C1,并写出点A1的坐标;(2)在y轴上确定一点P,使AP+PB的值最小,直接写出点P的坐标;(3)若△DBC与△ABC全等,请找出符合条件的△DBC(点D与点A重合除外),并直接写出点D的坐标. -参考答案-一、单选题1、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点A(x,y)关于x轴的对称点A′的坐标是(x,−y),进而求出即可.【详解】解:点A(2,-1)关于x轴的对称点的坐标为:(2,1).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.2、C【解析】【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、A【解析】【分析】根据关于y轴对称,纵不变,横相反的原理确定即可.【详解】∵关于y轴对称,纵不变,横相反,∴点与点Q关于y轴对称,点Q的坐标为(-3,2),故选A.【点睛】本题考查了坐标系中点的对称问题,熟练掌握对称点坐标的变化规律是解题的关键.4、A【解析】【分析】直接利用关于y轴对称点的性质得出答案.【详解】解:点A(4,−8)关于y轴的对称点的坐标是:(-4,-8).故选:A.【点睛】本题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的符号是解题关键.关于y轴对称的点,纵坐标相同,横坐标互为相反数.5、D【解析】【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:∵点的横坐标3>0,纵坐标-4<0,∴点P(3,-4)在第四象限.故选:D.【点睛】本题考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、B【解析】【分析】设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.【详解】解:∵设内任一点A(a,b)在第三象限内,∴a<0,b<0,∵点A关于x轴对称后的点B(a,-b),∴﹣b>0,∴点B(a,-b)所在的象限是第二象限,即在第二象限.故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.7、C【解析】【分析】平面直角坐标系中,点关于x轴对称的点的特点是横坐标不变,纵坐标变为原数相反数,据此解题.【详解】解:点A(2,3)关于x轴的对称的点B(2,﹣3),故选:C.【点睛】本题考查平面直角坐标系中,点关于x轴对称的点,是基础考点,难度较易,掌握相关知识是解题关键.8、A【解析】【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点A(2,﹣5)关于x轴对称的点的坐标.【详解】解:∵点(2,﹣5)关于x轴对称,∴对称的点的坐标是(2,5).故选:A.【点睛】本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).9、C【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵第二象限的点P到x轴的距离是2,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是2,∴点P的坐标为(-3,2).故选:C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.10、A【解析】【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点P(m,1)在第二象限内,∴m<0,∴1﹣m>0,则点Q(1﹣m,﹣1)在第四象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、5【解析】【分析】根据到x轴的距离等于纵坐标的绝对值解答即可.【详解】解:∵点M的坐标是,∴点M到x轴的距离是,故答案为:5.【点睛】此题考查了点的坐标,关键是掌握点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值.2、(-2,3)【解析】【分析】依据非负数的性质,即可得到x,y值,依据关于x轴、y轴对称的点的坐标特征,即可得出点C的坐标.【详解】解:∵|2x﹣4|+(y+3)2=0,∴2x-4=0,y+3=0,∴x=2,y=-3,∴A(2,-3),∵点A(x,y)关于x轴对称的点为B,∴B(2,3),∵点B关于y轴对称的点为C,∴C(-2,3),故答案为:(-2,3).【点睛】本题主要考查了非负数的性质以及关于x轴、y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数.3、 (4,2) (0,4)或(0,-4)【解析】【分析】根据B点的平移方式即可得到D点的坐标;设点P到AB的距离为h,则S△PAB=×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标;【详解】解:由题意得点D是点B(3,0)先向上平移2个单位,再向右平移1个单位的对应点,∴点D的坐标为(4,2);同理可得点C的坐标为(0,2),∴OC=2,∵A(-1,0),B(3,0),∴AB=4,∴,设点P到AB的距离为h,∴S△PAB=×AB×h=2h,∵S△PAB=S四边形ABDC,得2h=8,解得h=4,∵P在y轴上,∴OP=4,∴P(0,4)或(0,-4).故答案为:(4,2);(0,4)或(0,-4).【点睛】本题主要考查了根据平移方式确定点的坐标,坐标与图形,解题时注意:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.4、1【解析】【分析】先求出点A向上平移两个单位后的坐标为,x轴上点坐标的特征即可求出m的值.【详解】∵,∴将点A向上平移两个单位后的坐标为,∵在x轴上,∴,解得:.故答案为:1.【点睛】本题考查点坐标的平移以及x轴点坐标的特征,掌握点坐标平移的性质以及x轴点坐标的特征是解题的关键.5、16【解析】【分析】过B、A点分别作y轴的垂线,过A、C点作x轴的垂线,四条垂线分别相交于D、E、F、A点,则四边形DEAF为矩形,△ABF、△DBC、△ACE为直角三角形,则,根据题中坐标即可求解.【详解】如图所示,过B、A点分别作y轴的垂线,过A、C点作x轴的垂线,四条垂线分别相交于D、E、F、A点,则四边形DEAF为矩形,△ABF、△DBC、△ACE为直角三角形,故答案为:16.【点睛】对于坐标系中不规则三角形的面积计算,我们通常将其补成矩形,再减去三个规则的直角三角形.将复杂的不规则图形面积求解转化成简单的规则图形求解.三、解答题1、 (1)见解析;(2)见解析;(3)4.【解析】【分析】(1)根据点坐标直接确定即可;(2)根据轴对称的性质得到点A′、B′、C′,顺次连线即可得到△A′B′C′;(3)利用面积加减法计算.(1)如图所示:(2)解:如图所示:(3)解:△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4,故答案为:4.【点睛】此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键.2、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).【解析】【分析】(1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.(2)得出△ABC的底和高再由三角形面积公式计算即可.(3)S△ACD=S△ABC为同底不同高,故由(2)问知,再由点D在y轴上知D点坐标为(0,4)或(0,-4).【详解】解:(1)如图所示,点A为(-4,0),∵点C与点A关于y轴对称∴点C坐标为(4,0)(2)由×底×高有(3)∵S△ACD=S△ABC,AC=AC∴即D点的纵坐标为4或-4又∵D点在y轴上故D点坐标为(0,4)或(0,-4).【点睛】本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想.3、(1)见解析;(2)【解析】【分析】(1)分别作出A、B二点关于直线m的对称点A1、B1,再分别作A1、B1,二点关于直线n的对称点A2、B2即可;(2)根据轴对称的性质得出坐标即可.【详解】解:(1)如图,线段,即为所求;(2)由轴对称性质可得、横坐标平均数等于5,纵坐标相等,则 , 由轴对称性质可得、横坐标平均数等于9,纵坐标相等,则.【点睛】本题主要考查作图−轴对称变换,解题的关键是熟练掌握轴对称的性质.4、 (1)B的坐标(-2,4)(2)D的坐标(1,7)或(1,1)【解析】【分析】(1)向右平移m(m>0)个单位,横坐标加m,向上平移n(n>0)个单位,纵坐标加n,根据点B(2n-10,m+2),列出二元一次方程组,得到m、n的值,即可得到点B的坐标;(2)先求出点C的坐标和直线x=b中b的值,设点D(1,x),根据,列出方程,求解即可得到D的坐标.(1)解:∵点A(-4,0),当点A向右平移m(m>0)个单位,再向上平移n(n>0)个单位时,可与点B重合,∴点B(-4+m,0+n),又∵点B(2n-10,m+2),∴,解得,∴点B(-2,4).(2)解:∵点B(-2,4),点B向右平移3个单位后得到的点记为点C,∴点C(1,4),∵点C恰好在直线x=b上,∴b=1,直线x=1,∵点D在直线x=1上,∴,设点D(1,x),∵△BCD是等腰三角形,∴,∴,解得或,∴D的坐标(1,7)或(1,1).【点睛】本题考查点的平移引起的点的坐标变化规律.点左右平移只影响横坐标的变化,点上下平移只影响纵坐标的变化.具体如下:设一个点的坐标为(m,n),①若把这个点向左平移k(k>0)个单位后,坐标变为(m-k,n);若把这个点向右平移k个单位后,坐标则变为(m+k,n).②若把这个点向上平移k(k>0)个单位后,坐标变为(m,n+k);若把这个点向下平移k个单位后,坐标则变为(m,n- k).5、 (1)图见解析,A1(2,4)(2)P(0,3)(3)图见解析,【解析】【分析】(1)先作出点A、B、C关于y轴对称的点,然后连线即可;(2)连接AA1,交y轴于一点,然后根据轴对称的性质及两点之间线段最短可知此点即为所求的点P;(3)根据全等三角形的性质可直接作出图象,然后问题可求解.(1)解:如图所示:由图象可知:A1(2,4);(2)解:如(1)图示:∴由图可知P(0,3);(3)解:由全等三角形的性质可得如图所示:由图可知:符合条件的△DBC(点D与点A重合除外)点.【点睛】本题主要考查全等三角形的性质及坐标与图形,熟练掌握全等三角形的性质及坐标与图形是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步测试题,共20页。试卷主要包含了下列各点中,在第二象限的点是,点A关于y轴的对称点A1坐标是,点A关于轴的对称点的坐标是,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后测评,共21页。试卷主要包含了点A的坐标为,则点A在,已知点A,下列命题中为真命题的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步达标检测题,共25页。试卷主要包含了在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)