初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共25页。试卷主要包含了在平面直角坐标系中,点A,若平面直角坐标系中的两点A,在平面直角坐标系中,A,下列命题中为真命题的是等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平面直角坐标系中,为坐标原点,点的坐标为,将绕原点按逆时针方向旋转90°得,则点的坐标为( )A. B. C. D.2、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A.(a,b) B.(-a,-b) C.(a+2,b+4) D.(a+4,b+2)3、在平面直角坐标系中,点关于轴对称的点的坐标是( )A. B. C. D.4、在平面直角坐标系中,点A(2,3)关于x轴的对称点为点B,则点B的坐标是( )A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)5、若平面直角坐标系中的两点A(a,3),B(1,b)关于y轴对称,则a+b的值是( )A.2 B.-2 C.4 D.-46、在平面直角坐标系中,A(2,3),O为原点,若点B为坐标轴上一点,且△AOB为等腰三角形,则这样的B点有( )A.6个 B.7个 C.8个 D.9个7、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是( )A.(2,﹣3) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)8、在平面直角坐标系中,点A的坐标为.作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限9、下列命题中为真命题的是( )A.三角形的一个外角等于两内角的和B.是最简二次根式C.数,,都是无理数D.已知点E(1,a)与点F(b,2)关于x轴对称,则a+b=﹣110、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )A.﹣1 B.1 C.﹣2 D.2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,△ABC的顶点A,B分别在x轴,y轴上,∠ABC=90°,OA=OB=1,BC=2,将△ABC绕点O顺时针旋转,每次旋转90°,则第2021次旋转结束时,点C的坐标为 _____.2、已知点A(a,-3)与点B(3,b)关于y轴对称,则a+b=_____________________.3、点A(2,1)关于x轴对称的点B的坐标是______.4、如图,在中,,顶点A的坐标为,P是上一动点,将点P绕点逆时针旋转,若点P的对应点恰好落在边上,则点的坐标为________.5、如图,中,,,,将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是____________.三、解答题(5小题,每小题10分,共计50分)1、已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.2、△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△A1B1C1关于x轴对称的△A2B2C2.(3)求△AA1A2的面积3、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接写出点B关于原点对称的点B′的坐标: ;(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.4、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)5、如图,已知正方形ABCD的对角线AC、BD相交于点M,顶点A,B,C的坐标分别为(1,3),(1,1),(3,1)(1)在坐标轴中画出正方形ABCD关于x轴对称的正方形EFGH.(2)直接写出M点坐标:______;写出点M关于直线的对称点的坐标:______;写出点M关于直线的对称点的坐标:______; -参考答案-一、单选题1、D【解析】【分析】如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D,,,故有,,进而可得B点坐标.【详解】解:如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D ∵∴在和中∴∴∴B点坐标为故选D.【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.2、D【解析】【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标.【详解】解:∵△A′B′O′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,∴△ABO内任意点P(a,b)平移后的对应点P′的坐标为(a+4,b+2).故选:D.【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.3、D【解析】【分析】在平面直角坐标系中,点关于轴对称的点的坐标特征是:横坐标变为原数的相反数,纵坐标不变.【详解】解:点关于轴对称的点的坐标是,故选:D.【点睛】本题考查关于轴对称的点的坐标特征,是基础考点,掌握相关知识是解题关键.4、C【解析】【分析】平面直角坐标系中,点关于x轴对称的点的特点是横坐标不变,纵坐标变为原数相反数,据此解题.【详解】解:点A(2,3)关于x轴的对称的点B(2,﹣3),故选:C.【点睛】本题考查平面直角坐标系中,点关于x轴对称的点,是基础考点,难度较易,掌握相关知识是解题关键.5、A【解析】【分析】直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.【详解】解:依题意可得a=-1,b=3∴a+b=2故选A.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.6、C【解析】【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点B,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点B,作出图形,利用数形结合求解即可.【详解】解:如图,满足条件的点B有8个,故选:C.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定,对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.7、A【解析】【分析】关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.【详解】解:点(2,3)关于x轴对称的是 故选A【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.8、C【解析】【分析】根据题意结合轴对称的性质可求出点的坐标.再根据平移的性质可求出点的坐标,即可知其所在象限.【详解】∵点A的坐标为(1,3),点是点A关于x轴的对称点,∴点的坐标为(1,-3).∵点是将点向左平移2个单位长度得到的点,∴点的坐标为(-1,-3),∴点所在的象限是第三象限.故选C.【点睛】本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限.根据题意求出点的坐标是解答本题的关键.9、D【解析】【分析】利用三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点分别判断后即可确定正确的选项.【详解】解:A、三角形的外角等于不相邻的两个内角的和,故原命题错误,是假命题,不符合题意;B、,不是最简二次根式,故原命题是假命题,不符合题意;C、是有理数,故原命题错误,是假命题,不符合题意;D、已知点E(1,a)与点F(b,2)关于x轴对称,a=1,b=-2,则a+b=﹣1,正确,为真命题,符合题意.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点,难度不大.10、B【解析】【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.【详解】解:∵与点关于y轴对称,∴,,∴,故选:B.【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.二、填空题1、【解析】【分析】过点C作 轴于点D,根据 OA=OB=1,∠AOB=90°,可得∠ABO=45°,从而得到∠CBD=45°,进而得到BD=CD=2,,可得到点,再由将△ABC绕点O顺时针旋转,第一次旋转90°后,点,将△ABC绕点O顺时针旋转,第二次旋转90°后,点,将△ABC绕点O顺时针旋转,第三次旋转90°后,点,将△ABC绕点O顺时针旋转,第四次旋转90°后,点, 由此发现,△ABC绕点O顺时针旋转四次一个循环,即可求解.【详解】解:如图,过点C作 轴于点D,∵OA=OB=1,∠AOB=90°,∴∠ABO=45°,∵∠ABC=90°,∴∠CBD=45°,∴∠BCD=45°,∴BD=CD,∵BC=2,∴ ,∴BD=CD=2,∴OD=OB+BD=3,∴点,将△ABC绕点O顺时针旋转,第一次旋转90°后,点,将△ABC绕点O顺时针旋转,第二次旋转90°后,点,将△ABC绕点O顺时针旋转,第三次旋转90°后,点,将△ABC绕点O顺时针旋转,第四次旋转90°后,点, 由此发现,△ABC绕点O顺时针旋转四次一个循环,∵ ,∴第2021次旋转结束时,点C的坐标为.故答案为:【点睛】本题主要考查了勾股定理,坐标与图形,图形的旋转,明确题意,准确得到规律是解题的关键.2、【解析】【分析】由点A(a,-3)与点B(3,b)关于y轴对称,可得从而可得答案.【详解】解: 点A(a,-3)与点B(3,b)关于y轴对称, 故答案为:【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.3、【解析】【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),据此解答即可.【详解】解:根据轴对称的性质,得点A(2,1)关于x轴对称点A′的坐标是(2,-1),故答案为:(2,-1)【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.4、【解析】【分析】过点作轴,垂足为,证明,可得的长度,进而求得点的坐标.【详解】解:如图,过点作轴,垂足为,将点P绕点逆时针旋转,点P的对应点恰好落在边上,,,顶点A的坐标为,是等腰直角三角形故答案为:【点睛】本题考查了全等三角形的性质与判定,坐标与图形,旋转的性质,等腰三角形的性质与判定,添加辅助选构造全等是解题的关键.5、【解析】【分析】如图(见解析),过点作轴于点,点作轴于点,设,从而可得,先利用勾股定理可得,从而可得,再根据旋转的性质可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质可得,由此即可得出答案.【详解】解:如图,过点作轴于点,点作轴于点,设,则,在中,,在中,,,解得,,由旋转的性质得:,,,,在和中,,,,,故答案为:.【点睛】本题考查了勾股定理、旋转、点坐标等知识点,画出图形,通过作辅助线,正确找出两个全等三角形是解题关键.三、解答题1、(1)见解析;(2)见解析;(3)(﹣4,﹣3)【解析】【分析】(1)分别作出A,B,C 的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)根据所画图形,直接写出坐标即可.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)点B2的坐标为(﹣4,﹣3).【点睛】本题考查作图——轴对称变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2、 (1)图见解析,点C1的坐标为(2)图见解析(3)16【解析】【分析】(1)利用轴对称变换的性质分别作出,,的对应点,,即可;(2)利用轴对称变换的性质分别作出,,的对应点,,即可;(3)利用三角形面积公式求解即可.(1)解:如图,△即为所求,点的坐标;(2)解:如图,△即为所求;(3)解:.【点睛】本题考查作图轴对称变换,三角形面积等知识,解题的关键是掌握轴对称变换的性质,属于中考常考题型.3、(1)(4,﹣1);(2)见解析;(3)见解析.【解析】【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.【详解】(1)点B关于原点对称的点B′的坐标为(4,﹣1),故答案为:(4,﹣1);(2)如图所示,△A1B1C1即为所求.(3)如图所示,△A2B2C2即为所求.【点睛】本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.4、 (1)见解析,;(2)见解析,(3)绕点O顺时针时针旋转【解析】【分析】(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.(1)解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:(2)解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:(3)解:根据题意得:绕点O顺时针时针旋转后可直接得到.【点睛】本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.5、 (1)作图见详解;(2);; .【解析】【分析】(1)根据图象可得出点D的坐标,然后由点坐标关于x轴对称的点的特点:横坐标不变,纵坐标互为相反数可得点E、F、G、H四个点的坐标,然后顺次连接即可;(2)根据坐标系中中点的坐标等于两个点横坐标和的一半,纵坐标和的一半可确定点M,然后由关于对称可得,纵坐标不变,两个对称点的横坐标和的一半即为对称轴,求解即可得;同理可求得点M关于对称的点的坐标.(1)解:根据图象可得:,点A、B、C、D关于x轴的对称点分别为:,,,,然后顺次连接可得:如图所示:正方形EFGH即为所求;(2)由图可得:,,;设点M关于的对称点纵坐标不变,为,∴,解得:,∴点M关于的对称点为;设点M关于的对称点纵坐标不变,为,∴,解得:,∴点M关于的对称点为;故答案为:;; .【点睛】题目主要考查坐标系中关于坐标轴对称的点的特点及求线段中点的坐标及作图方法,理解坐标系中关于坐标轴对称的点的特点是解题关键.
相关试卷
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课时作业,共21页。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试随堂练习题,共24页。试卷主要包含了下列说法错误的是,在平面直角坐标系中,点A等内容,欢迎下载使用。
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试一课一练,共25页。试卷主要包含了下列命题中为真命题的是,已知点P,在平面直角坐标系中,点A等内容,欢迎下载使用。