终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    难点解析冀教版八年级数学下册第十九章平面直角坐标系重点解析练习题(含详解)

    立即下载
    加入资料篮
    难点解析冀教版八年级数学下册第十九章平面直角坐标系重点解析练习题(含详解)第1页
    难点解析冀教版八年级数学下册第十九章平面直角坐标系重点解析练习题(含详解)第2页
    难点解析冀教版八年级数学下册第十九章平面直角坐标系重点解析练习题(含详解)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学第十九章 平面直角坐标系综合与测试达标测试

    展开

    这是一份数学第十九章 平面直角坐标系综合与测试达标测试,共22页。试卷主要包含了已知点和点关于轴对称,则的值为,在平面直角坐标系中,点等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点  A.第一象限 B.第二象限 C.第三象限 D.第四象限2、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是(       A.(2,﹣3) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)3、在平面直角坐标系中,点P(-3,-3)在(       A.第一象限 B.第二象限 C.第三象限 D.第四象限4、已知点和点关于轴对称,则的值为(       A.1 B. C. D.5、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1O2O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是(  )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)6、在平面直角坐标系中,点P(-2,1)向右平移3个单位后位于(       A.第一象限 B.第二象限 C.第三象限 D.第四象限7、小嘉去电影院观看《长津湖》,如果用表示5排7座,那么小嘉坐在7排8座可表示为(       A. B. C. D.8、在平面直角坐标系中,点(-2,a2+3)关于x轴对称的点在(       A.第一象限 B.第二象限 C.第三象限 D.第四象限9、平面直角坐标系中,下列在第二象限的点是(       A. B. C. D.10、点与点Q关于y轴对称,则点Q的坐标为(       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,把点P(a−1,5)向左平移3个单位得到点Q(2−2b,5),则2a+4b+3的值为______.2、如果点在第四象限,那么点在第______象限.3、经过点Q(0,1)且平行于x轴的直线可以表示为直线_________.4、教室里,从前面数第8行第3位的学生位置记作,则坐在第3行第8位的学生位置可表示为____________.5、已知点A(m-1,3)与点B(2,n+1)关于y轴对称,则mn=_______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,(1)在图中作出关于轴的对称图形,并直接写出点的坐标;(2)求的面积;(3)点与点关于轴对称,若,直接写出点的坐标.2、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC的三个顶点都在小正方形的顶点上.(1)画出三角形ABC向左平移4个单位长度后的三角形DEF(点DEF与点ABC对应),并画出以点E为原点,DE所在直线为x轴,EF所在直线为y轴的平面直角坐标系;(2)在(1)的条件下,点D坐标(﹣3,0),将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点PQM(点PQM与点DEF对应),画出三角形PQM,并直接写出点P的坐标.3、如图所示,在平面直角坐标系中,的顶点坐标分别是(1)已知点关于轴的对称点的坐标为,求的值;(2)画出,且的面积为            (3)画出与关于轴成对称的图形,并写出各个顶点的坐标.4、在平面直角坐标系xoy中,ABC如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).(1)如图1,在BC上找一点P,使∠BAP=45°;(2)如图2,作△ABC的高BH5、如图,的三个顶点都在边长为1的正方形网格的格点上,其中点B的坐标为,点C的坐标为(1)在网格中画出关于y轴对称的图形,并直接写出点的坐标;(2)求线段的长. -参考答案-一、单选题1、B【解析】【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【详解】解:在第二象限,故选:B.【点睛】本题考查了点的坐标,四个象限内坐标的符号:第一象限:;第二象限:;第三象限:;第四象限:;是基础知识要熟练掌握.2、A【解析】【分析】关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.【详解】解:点(2,3)关于x轴对称的是 故选A【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.3、C【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征解答即可.【详解】解:因为A(−3,-3)中的横坐标为负,纵坐标为负,故点P在第三象限.故选C.【点睛】本题主要考查点所在的象限问题,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).4、A【解析】【分析】直接利用关于轴对称点的性质(横坐标不变,纵坐标互为相反数)得出的值,进而得出答案.【详解】解答:解:和点关于轴对称,故选:A.【点睛】此题主要考查了关于轴对称点的性质,正确得出的值是解题关键.5、C【解析】【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.6、A【解析】【分析】求出点P平移后的坐标,继而可判断点P的位置.【详解】解:点P(-2,1)向右平移3个单位后的坐标为(1,1),点(1,1)在第一象限.故选:A【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.7、B【解析】【分析】根据题意可知“坐标的第一个数表示排,第二个数表示座”,然后用坐标表示出小嘉的位置即可.【详解】解:∵用表示5排7座∴坐标的第一个数表示排,第二个数表示座∴小嘉坐在7排8座可表示出(7,8).故选B.【点睛】本题主要考查了坐标的应用,根据题意得知“坐标的第一个数表示排,第二个数表示座”是解得本题的关键.8、C【解析】【分析】根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数求解即可.【详解】解:∵点关于轴对称的点是∴点关于轴对称的点在第三象限.故选:C.【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数.9、C【解析】【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、A【解析】【分析】根据关于y轴对称,纵不变,横相反的原理确定即可.【详解】∵关于y轴对称,纵不变,横相反,∴点与点Q关于y轴对称,点Q的坐标为(-3,2),故选A.【点睛】本题考查了坐标系中点的对称问题,熟练掌握对称点坐标的变化规律是解题的关键.二、填空题1、15【解析】【分析】直接利用平移中点的变化规律求得a+2b=6,再整体代入求解即可.【详解】解:∵把点P(a−1,5)向左平移3个单位得到点Q(2−2b,5),a-1-3=2-2b,即a+2b=6,∴2a+4b+3=2(a+2b)+3=15,故答案为:15.【点睛】本题考查了坐标系中点、线段的平移规律以及代数式的求值.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.2、一【解析】【分析】先判断,再判断,结合象限内点的坐标规律可得答案.【详解】解:在第四象限,在第一象限.故答案为:一.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限3、y=1【解析】【分析】根据平行于x轴的直线上所有点纵坐标相等,又直线经过点Q(0,1),则该直线上所有点的共同特点是纵坐标都是1.【详解】解:∵所求直线经过点Q(0,1)且平行于x轴,∴该直线上所有点纵坐标都是1,故可以表示为直线y=1,故答案为:y=1.【点睛】本题考查了平行于坐标轴的直线上点的坐标特点:平行于x轴的直线上所有点纵坐标相等,平行于y轴的直线上所有点横坐标相等.4、【解析】【分析】根据已知点的坐标表示方法即可求即.【详解】解:∵从前面数第8行第3位的学生位置记作∴坐在第3行第8位的学生位置可表示为(3,8).故答案为(3,8).【点睛】本题考查点的坐标表示位置,掌握点坐标表示方法是解题关键.5、1【解析】【分析】根据关于y轴对称的点,纵坐标不变,横坐标互为相反数,列出方程求解即可.【详解】解:∵点A(m-1,3)与点B(2,n+1)关于y轴对称,m-1=-2,n+1=3,解得,m=-1,n=2,mn=-1+2=1,故答案为:1.【点睛】本题考查了关于y轴对称点的坐标变化,解题关键是明确关于y轴对称的点,纵坐标不变,横坐标互为相反数.三、解答题1、 (1)见详解;(−2,1);(2)8.5;(3)P(5,3)或(−1,−3).【解析】【分析】(1)画出A1B1C1,据图直接写出C1坐标;(2)先求出ABC外接矩形CDEF面积,用之减去三个直角三角形的面积,得ABC的面积;(3)先根据PQ关于x轴对称,得到Q的坐标,再构建方程求解即可.(1)解:如图1A1B1C1就是求作的与ABC关于x轴对称的三角形,点C1的坐标(−2,1);(2)解:如图2由图知矩形CDEF的面积:5×5=25ADC的面积:×4×5=10ABE的面积:×1×3= CBF的面积:×5×2=5所以ABC的面积为:25-10--5=8.5.(3)解:∵点P(a,a−2)与点Q关于x轴对称,Q(a,2−a),PQ=6,∴|(a-2)-(2-a)|=6,解得:a=5或a=-1,∴P(5,3)或(−1,−3).【点睛】本题考查了作图−轴对称变换,三角形的面积等知识,解题的关键是理解题意,掌握关于坐标轴对称的两点的坐标特征,属于中考常考题型.2、(1)见解析;(2)画图见解析,点P的坐标为(-5,3)【解析】【分析】(1)根据平移的特点先找出DEF所在的位置,然后根据题意建立坐标系即可;(2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点PQM,即点P可以看作是点D向左平移2个单位,向上平移3个单位得到的,由此求解即可.【详解】解:(1)如图所示,即为所求;(2)如图所示,△PQM即为所求;PD(-3,0)横坐标减2,纵坐标加3得到的,∴点P的坐标为(-5,3).【点睛】本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点.3、(1);(2)作图见详解;13;(3)作图见详解;【解析】【分析】(1)利用关于x轴的对称点的坐标特点(横坐标不变,纵坐标互为相反数)直接写出答案即可;(2)先确定ABC点的位置,然后顺次连接,最后运用割补法计算三角形面积即可;(3)先确定ABC三点关于y轴对称的对称点位置,然后顺次连接即可;最后直接写出三个点的坐标即可.【详解】解:(1)∵点关于x轴的对称点P的坐标为(2)如图:即为所求,故答案为:13;(3)如图:ABC点关于y轴的对称点为:,顺次连接,即为所求【点睛】此题主要考查了轴对称变换的作图题,确定组成图形关键点的对称点是解答本题的关键.4、(1)见解析;(2)见解析【解析】【分析】(1)过点BMQx轴,过点AAMMQ于点M,过点NNQMQ于点Q,连接BN,连接ANBC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;(2)在x轴负半轴取点Q,使OQ=2,连接BQAC于点H,则BH即为△ABC的高.过点BBGx轴于点G,过点AADx轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.【详解】解:(1)如图,过点BMQx轴,过点AAMMQ于点M,过点NNQMQ于点Q,连接BN,连接ANBC于点P,则∠BAP=45°,如图所示,点P即为所求, 理由如下:根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,∴△ABM≌△BNQAB=BN,∠ABM=∠BNQ∴∠BAP=∠BNP∵∠NBQ+∠BNQ=90°,∴∠ABM +∠BNQ=90°,∴∠ABN=90°,∴∠BAP=∠BNP=45°;(2)如图,在x轴负半轴取点Q,使OQ=2,连接BQAC于点H,则BH即为△ABC的高.理由如下:过点BBGx轴于点G,过点AADx轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,∴△ACD≌△QBG∴∠ACD=∠QBG∵∠QBG+∠BQG=90°,∴∠ACD +∠BQG=90°,∴∠CHQ=90°,BHAC,即BH为△ABC的高.【点睛】本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.5、 (1)画图见解析,(2)【解析】【分析】(1)分别确定关于轴对称的,再顺次连接,再根据位置可得的坐标即可;(2)由勾股定理进行计算即可得到答案.(1)解:如图,是所求作的三角形, (2)解:由勾股定理可得:【点睛】本题考查的是轴对称的作图,坐标与图形,勾股定理的应用,掌握“轴对称作图的基本步骤与勾股定理的应用”是解本题的关键. 

    相关试卷

    八年级下册第十九章 平面直角坐标系综合与测试课后作业题:

    这是一份八年级下册第十九章 平面直角坐标系综合与测试课后作业题,共24页。试卷主要包含了下列命题为真命题的是,点关于轴的对称点是,下列各点中,在第二象限的点是,在平面直角坐标系中,A等内容,欢迎下载使用。

    冀教版八年级下册第十九章 平面直角坐标系综合与测试巩固练习:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试巩固练习,共26页。试卷主要包含了已知点A,下列说法错误的是等内容,欢迎下载使用。

    初中数学第十九章 平面直角坐标系综合与测试练习:

    这是一份初中数学第十九章 平面直角坐标系综合与测试练习,共24页。试卷主要包含了在平面直角坐标系xOy中,点M,下列命题中为真命题的是,点在第四象限,则点在第几象限等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map