初中数学第十九章 平面直角坐标系综合与测试课时练习
展开
这是一份初中数学第十九章 平面直角坐标系综合与测试课时练习,共26页。试卷主要包含了若点P等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在平面直角坐标系中,已知,以为直边构造等腰,再以为直角边构造等腰,再以为直角边构造等腰,…,按此规律进行下去,则点的坐标为( )
A.B.C.D.
2、在下列说法中,能确定位置的是( )
A.禅城区季华五路B.中山公园与火车站之间
C.距离祖庙300米D.金马影剧院大厅5排21号
3、已知点与点关于y轴对称,则的值为( )
A.5B.C.D.
4、在平面直角坐标系中,已知点P(5,−5),则点P在( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、点向上平移2个单位后与点关于y轴对称,则( ).
A.1B.C.D.
6、若点在第一象限,则a的取值范围是( )
A.B.C.D.无解
7、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )
A.第四象限B.第三象限C.第二象限D.第一象限
8、在平面直角坐标系中,点P(-2,1)向右平移3个单位后位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
9、在平面直角坐标系中,点关于轴的对称点的坐标是( )
A.B.C.D.
10、点与点Q关于y轴对称,则点Q的坐标为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知点是第二象限的点,则的取值范围是______.
2、将点P(m+1,n-2)向上平移 3 个单位长度,得到点Q(2,1-n),则点A(m,n)坐标为_________.
3、点关于y轴的对称点的坐标为________.
4、如图,是某学校的平面示意图.如果用(5,1)表示学校大门的位置,那么运动场表示为_____,(8,5)表示的场所是_____________.
5、请将命题“坐标轴上的点至少有一个坐标为0”改写成“如果那么”的形式__.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(3,2).
(1)将△ABC向下平移四个单位长度,画出平移后的△A1B1C1;(点A、B、C的对应点分别是点A1、B1、C1);
(2)画出△A1B1C1关于y轴对称的△A2B2C2(点A1、B1、C1的对称点分别是点A2、B2、C2).
2、如图,点A为x轴负半轴上一点,点B为y轴正半轴上一点,,,且a、b满足有意义.
(1)若,求AB的长;
(2)如图1,点C与点A关于y轴对称,点P在x轴上(点P在点A左边),以PB为直角边在PB的上方作等腰直角△PDB,试猜想AD与PC的关系并证明;
(3)如图2,点M为AB中点,点E为射线OA上一点,点F为射线BO上一点,且,设,,请求出EF的长度(用含m、n的代数式表示).
3、在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足.
(1)求点A和点B的坐标;
(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:
(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标.
4、如图,在平面直角坐标系中,的三个顶点为,,.
(1)画出关于x轴对称的;
(2)将的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点,,,画出.
5、如图,在正方形网格中,每个小正方形的边长都为1,点A,点B在网格中的位置如图所示.
(1)请在下面方格纸中建立适当的平面直角坐标系,使点A、点B的坐标分别为、;
(2)点C的坐标为,连接,则的面积为_________.
(3)在图中画出关于y轴对称的图形;
(4)在x轴上找到一点P,使最小,则的最小值是_________.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据等腰直角三角形的性质得到OA1=,OA2=,OA3=,…,OA1033=,再利用A1、A2、A3、…,每8个一循环,再回到x轴的负半轴的特点可得到点A1033在x轴负半轴,即可确定点A1033的坐标.
【详解】
解:∵等腰直角三角形OA1A2的直角边OA1在x轴的负半轴上,且OA1=A1A2=,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,
∴OA1=,OA2=,OA3=,……,OA1033=,
∵A1、A2、A3、…,每8个一循环,再回到x轴的负半轴,
1033=8×129+1,
∴点A1033在x轴负半轴,
∵OA1033=,
∴点A1033的坐标为:,
故选:A.
【点睛】
本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的倍.也考查了直角坐标系中各象限内点的坐标特征.
2、D
【解析】
【分析】
根据确定位置的方法逐一判处即可.
【详解】
解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;
B、中山公园与火车站之间,没能确定准确位置,故不符合题意;
C、距离祖庙300米,有距离但没有方向,故不符合题意;
D、金马影剧院大厅5排21号,确定了位置,故符合题意.
故选:D
【点睛】
本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.
3、A
【解析】
【分析】
点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.
【详解】
解:由题意知:
解得
∴
故选A.
【点睛】
本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.
4、D
【解析】
【分析】
根据各象限内点的坐标特征解答即可.
【详解】
解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5、D
【解析】
【分析】
利用平移及关于y轴对称点的性质即可求解.
【详解】
解:把向上平移2个单位后得到点 ,
∵点与点关于y轴对称,
∴ , ,
∴ ,
∴,
故选:D.
【点睛】
本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.
6、B
【解析】
【分析】
由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.
【详解】
解: 点在第一象限,
由①得:
由②得:
故选B
【点睛】
本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.
7、A
【解析】
【分析】
直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.
【详解】
∵点P(m,1)在第二象限内,
∴m<0,
∴1﹣m>0,
则点Q(1﹣m,﹣1)在第四象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
8、A
【解析】
【分析】
求出点P平移后的坐标,继而可判断点P的位置.
【详解】
解:点P(-2,1)向右平移3个单位后的坐标为(1,1),
点(1,1)在第一象限.
故选:A.
【点睛】
本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.
9、B
【解析】
【分析】
利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,−y),进而求出即可.
【详解】
解:点P(−3,2)关于x轴的对称点的坐标为:(−3,−2).
故选:B.
【点睛】
此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.
10、A
【解析】
【分析】
根据关于y轴对称,纵不变,横相反的原理确定即可.
【详解】
∵关于y轴对称,纵不变,横相反,
∴点与点Q关于y轴对称,点Q的坐标为(-3,2),
故选A.
【点睛】
本题考查了坐标系中点的对称问题,熟练掌握对称点坐标的变化规律是解题的关键.
二、填空题
1、
【解析】
【分析】
根据点是第二象限的点,可得 ,即可求解.
【详解】
解:∵点是第二象限的点,
∴ ,解得: ,
∴的取值范围是.
故答案为:
【点睛】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.
2、(1,0)
【解析】
略
3、
【解析】
【分析】
根据关于y轴对称的两个点,纵坐标相等,横坐标互为相反数求解即可
【详解】
解:点关于y轴的对称点的坐标为
故答案为:
【点睛】
本题考查了关于坐标轴对称的点的特征,掌握关于y轴对称的两个点,纵坐标相等,横坐标互为相反数是解题的关键.
4、 (6,8) 宿舍楼
【解析】
略
5、如果一个点在坐标轴上,那么这个点至少有一个坐标为0
【解析】
【分析】
命题是由题设与结论两部分组成,如果后面的是题设,那么后面的是结论,根据定义直接改写即可.
【详解】
解:将命题“坐标轴上的点至少有一个坐标为0”改写成“如果那么”的形式:
如果一个点在坐标轴上,那么这个点至少有一个坐标为0.
故答案为:如果一个点在坐标轴上,那么这个点至少有一个坐标为0.
【点睛】
本题考查的命题的组成,把一个命题改写成“如果那么”的形式,平面直角坐标系坐标轴上点的坐标特点,掌握“命题是由题设与结论两部分组成”是解本题的关键.
三、解答题
1、(1)图见解析;(2)图见解析.
【解析】
【分析】
(1)先根据平移分别画出点,再顺次连接即可得;
(2)先根据轴对称的性质画出点A2,B2,C2,再顺次连接即可得.
【详解】
解:(1)如图,即为所求;
(2)如图,即为所求.
【点睛】
本题考查了平移作图、画轴对称图形,熟练掌握平移和轴对称的作图方法是解题关键.
2、 (1)
(2)AD=PC,证明见解析;
(3)
【解析】
【分析】
(1) 根据二次根式的非负性可求得,再结合勾股定理可求得AB的值;
(2)连接BC,只需要证明△PBC≌△DBA,即可证明AD=PC;
(3)分情况讨论,当时,过点M作MN⊥x轴,作MG⊥y轴,可证明△MEN≌△MFG,从而可得ME=MF,EN=GF,可借助m、n的代数式EN和MN,从而表示ME,继而可得EF,画图可知,其它两种情况同理可得.
(1)
解:∵a、b满足有意义,
∴且,
∴,即,,
.
(2)
解:AD=PC,证明如下:
连接BC,由(1)可得OA=OB=OC,
∵两个坐标轴垂直,
∴∠OAB=∠ABO=∠OBC=∠OCB=45°,
∴AB=BC,∠ABC=90°,
又∵△PDB为等腰直角三角形,
∴BP=BD,∠DBP=90°,
∴∠ABD=∠DBP+∠ABP=∠ABC+∠ABP=∠BPC,
在△PBC和△DBA中
∴△PBC≌△DBA(SAS)
∴AD=PC.
(3)
当时, 过点M作MN⊥x轴,作MG⊥y轴,
∴∠ANM=∠MGB=90°,
由(2)可知∠OAB=∠ABO=45°,
∴∠AMN=∠BMG=90°,
∴AN=MN,MG=BG,∠NMG=90°,
∵M为AB的中点
∴AM=BM,
∴△ANM≌△MGB(SSS),
∴AN=MN=MG=BG,
∵∠EMF=90°,
∴∠EMN=90°-∠NMF=∠GMF,
在△MEN和△MFG中
∵
∴△MEN≌△MFG(SAS),
∴EM=MF,EN=GF,
∵,,
∴,
∴, ,
在Rt△EMN中,根据勾股定理,
在Rt△EMF中,根据勾股定理,
当或时同理可证.
故.
【点睛】
本题考查勾股定理,全等三角形的性质和判定,坐标与图形,二次根式的非负性等.(1)中能根据二次根式的非负性得出a=b=c是解题关键;(2)中正确构造辅助线,作出全等三角形是解题关键;(3)能借助全等三角形和线段的和差正确表示线段的长度是解题关键.
3、(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)
【解析】
【分析】
(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;
(2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;
(3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解.
【详解】
(1)∵,
∴.
∵,
∴,
∴,
∴,
∴,.
(2)如图,过点F作FH⊥AO于点H
∵AF⊥AE
∴∠FHA=∠AOE=90°,
∵
∴∠AFH=∠EAO
又∵AF=AE,
在和中
∴
∴AH=EO=2,FH=AO=4
∴OH=AO-AH=2
∴F(-2,4)
∵OA=BO,
∴FH=BO
在和中
∴
∴HD=OD
∵
∴HD=OD=1
∴D(-1,0)
∴D(-1,0),F(-2,4);
(3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S
∴
∴,
∴
∴
∴
∴等腰
∴NQ=NO,
∵NG⊥PN, NS⊥EG
∴
∴,
∴
∵,
∴
∵点E为线段OB的中点
∴
∴
∴
∴
∴
∴
∴
∴等腰
∴NG=NP,
∵
∴
∴∠QNG=∠ONP
在和中
∴
∴∠NGQ=∠NPO,GQ=PO
∵,
∴PO=PB
∴∠POE=∠PBE=45°
∴∠NPO=90°
∴∠NGQ=90°
∴∠QGR=45°.
在和中
∴.
∴QR=OE
在和中
∴
∴QM=OM.
∵NQ=NO,
∴NM⊥OQ
∵
∴等腰
∴
∵
∴
在和中
∴
∴NS=EM=4,MS=OE=2
∴N(-6,2).
【点睛】
本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解.
4、 (1)见解析
(2)见解析
【解析】
【分析】
(1)分别作出,,关于轴对称的三个点,连接即可得到.
(2)求出将A1(-1,-2),B1(-2,-1),C1(0,-1)横坐标与纵坐标同时乘以-2的对应点,连接即可得到.
(1)
解:分别作出,,关于轴对称的三个点为A1(-1,-2),B1(-2,-1),C1(0,-1),连接得到,如下图:
(2)
解:将将A1(-1,-2),B1(-2,-1),C1(0,-1)横坐标与纵坐标同时乘以-2的对应点分别为:A2(2,4),B2(4,2),C2(0,2),描点后连线得,如下图:
【点睛】
本题考查了作轴对称图形,坐标的变化,解题的关键是掌握坐标的变化规律,再准确描点.
5、 (1)见解析
(2)52
(3)见解析
(4)34
【解析】
【分析】
(1)根据A,B两点坐标确定平面直角坐标系即可;
(2)把三角形的面积看成矩形面积减去周围三个三角形面积即可;
(3)根据轴对称的性质找到对应点,顺次连接即可;
(4)作点A关于x轴的对称点A′,连接BA′交x轴于点P,此时AP+BP最小.
【小题1】
解:如图,平面直角坐标系如图所示;
【小题2】
如图,△ABC即为所求,
S△ABC=2×3-12×1×2-12×1×2-12×1×3=52;
【小题3】
如图,△A1B1C1即为所求;
【小题4】
如图,点P即为所求,
AP+BP=A′P+PB= A′B=52+32=34.
【点睛】
本题考查作图-轴对称变换,勾股定理、轴对称最短问题等知识,解题的关键是熟练掌握轴对称变换的性质,属于中考常考题型.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共21页。试卷主要包含了已知点A,点关于轴对称点的坐标为等内容,欢迎下载使用。
这是一份数学第十九章 平面直角坐标系综合与测试课时训练,共25页。试卷主要包含了在下列说法中,能确定位置的是等内容,欢迎下载使用。
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试测试题,共26页。试卷主要包含了在平面直角坐标系中,点A,已知点P等内容,欢迎下载使用。