![难点解析冀教版八年级数学下册第十九章平面直角坐标系同步测评练习题(无超纲)第1页](http://m.enxinlong.com/img-preview/2/3/12765749/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版八年级数学下册第十九章平面直角坐标系同步测评练习题(无超纲)第2页](http://m.enxinlong.com/img-preview/2/3/12765749/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版八年级数学下册第十九章平面直角坐标系同步测评练习题(无超纲)第3页](http://m.enxinlong.com/img-preview/2/3/12765749/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课时训练
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课时训练,共24页。试卷主要包含了下列命题中为真命题的是,在下列说法中,能确定位置的是,在平面直角坐标系中,点P,点关于轴的对称点是等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果点P(﹣5,b)在第二象限,那么b的取值范围是( )A.b≥0 B.b≤0 C.b<0 D.b>02、在平面直角坐标系中,点所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、在平面直角坐标系中,已知点P(2a﹣4,a+3)在x轴上,则点(﹣a+2,3a﹣1)所在的象限为( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、下列命题中为真命题的是( )A.三角形的一个外角等于两内角的和B.是最简二次根式C.数,,都是无理数D.已知点E(1,a)与点F(b,2)关于x轴对称,则a+b=﹣15、在平面直角坐标系中,已知点P(5,−5),则点P在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、在下列说法中,能确定位置的是( )A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号7、在平面直角坐标系中,点P(-2,3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、如果点在第四象限内,则m的取值范围( )A. B. C. D.9、点关于轴的对称点是( )A. B. C. D.10、若点M在第二象限,且点M到x轴的距离为2,到y轴的距离为1,则点M的坐标为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、电影票上“10排3号”,记作,“8排23号”,记作,则“5排16号”记作______.2、中国象棋是一个有悠久历史的游戏.如图的棋盘上,可以把每个棋子看作是恰好在某个正方形顶点上的一个点,若棋子“帅”对应的数对,棋子“象”对应的数对,则图中棋盘上“卒”对应的数对是_______3、在平面直角坐标系xOy中,已知三角形的三个顶点的坐标分别是A(0,1),B(1,0),C(1,2),点P在y轴上,设三角形ABP和三角形ABC的面积分别为S1和S2,如果S1⩾S2,那么点P的纵坐标yp的取值范围是 ________.4、经过点Q(0,1)且平行于x轴的直线可以表示为直线_________.5、点到轴的距离是________.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,已知点A(﹣3,1),B(﹣2,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.2、如图①,在平面直角坐标系xoy中,直线AB与x轴交于点A(,0),与y轴交于点B(0,4).(1)求△ABO的面积;(2)如图D为OA延长线上一动点,以点D为直角顶点,以BD为直角边作等腰直角△BDE,连接EA并延长EA与y轴交于点F,求OF的长;(3)①如图②,点A(,0),点E是y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO中点,若△MNO是等腰三角形,则这样的点M有多少个?直接写出答案.②如图②,点A(,0),点E是y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,请探究OM+MN有最小值吗,如果有,请求出最小值?3、如图,在正方形网格中,每个小正方形的边长都为1,点A,点B在网格中的位置如图所示.(1)请在下面方格纸中建立适当的平面直角坐标系,使点A、点B的坐标分别为、;(2)点C的坐标为,连接,则的面积为_________.(3)在图中画出关于y轴对称的图形;(4)在x轴上找到一点P,使最小,则的最小值是_________.4、△ABC在平面直角坐标系中的位置如图所示,已知A(﹣1,3),B(﹣4,2),C(﹣2,﹣2),将△ABC先向右平移4个单位长度,再向下平移1个单位长度得到△DEF,点A、B、C的对应点分别为D、E、F.(1)在图中画出△DEF,并直接写出点E的坐标;(2)判断线段AC与DF的关系为 ;(3)连接BD、CD,并直接写出△BCD的面积.5、在平面直角坐标系中,点,点,点.以点O为中心,逆时针旋转,得到,点的对应点分别为.记旋转角为.(1)如图①,当点C落在上时,求点D的坐标;(2)如图②,当时,求点C的坐标;(3)在(2)的条件下,求点D的坐标(直接写出结果即可). -参考答案-一、单选题1、D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,据此可得到b的取值范围.【详解】解:∵点P(﹣5,b)在第二象限,∴b>0,故选D.【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.2、D【解析】【分析】根据第四象限内横坐标大于零,纵坐标小于零,可得答案.【详解】解:点所在的象限是第四象限,故选:D.【点睛】本题考查了点的坐标,熟记各象限内点的坐标特征是解题关键.3、D【解析】【分析】由x轴上点的坐标特点求出a值,代入计算出点的横纵坐标,即可判断.【详解】解:∵点P(2a﹣4,a+3)在x轴上,∴a+3=0,解得a=-3,∴﹣a+2=5,3a﹣1=-10,∴点(﹣a+2,3a﹣1)所在的象限为第三象限,故选:D.【点睛】此题考查了直角坐标系中点的坐标特点,根据点的坐标判断点所在的象限,由点在x轴上求出a的值是解题的关键.4、D【解析】【分析】利用三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点分别判断后即可确定正确的选项.【详解】解:A、三角形的外角等于不相邻的两个内角的和,故原命题错误,是假命题,不符合题意;B、,不是最简二次根式,故原命题是假命题,不符合题意;C、是有理数,故原命题错误,是假命题,不符合题意;D、已知点E(1,a)与点F(b,2)关于x轴对称,a=1,b=-2,则a+b=﹣1,正确,为真命题,符合题意.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点,难度不大.5、D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、D【解析】【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.7、B【解析】【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B.【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.8、A【解析】【分析】根据第四象限点的横坐标为正,纵坐标为负,列不等式即可求解.【详解】解:∵点在第四象限内,∴,解得,;故选:A.【点睛】本题考查了不同象限内点的坐标的特征,解题关键是明确第四象限点的横坐标为正,纵坐标为负.9、A【解析】【分析】直接利用关于x轴对称点的性质得出答案.【详解】解:点P(−4,9)关于x轴对称点P′的坐标是:(−4,−9).故选:A.【点睛】此题主要考查了关于x轴对称点的性质,正确得出横纵坐标的关系是解题关键.10、C【解析】【分析】根据平面直角坐标系中第二象限内点的横坐标是负数,纵坐标是正数,点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值,即可求解.【详解】解:点M在第二象限,且M到轴的距离为2,到y轴的距离为1,点M的横坐标为,点的纵坐标为,点M的坐标为:.故选:C.【点睛】本题考查了平面直角坐标系中点的坐标,熟练掌握坐标系中点的特征是解题的关键.二、填空题1、【解析】【分析】根据题中规定的意义写出一对有序实数对.【详解】解:∵电影票上“10排3号”,记作,“8排23号”,记作,∴“5排16号”记作(5,16).故答案为(5,16).【点睛】本题考查了坐标确定位置:平面直角坐标系中,有序实数对与点一一对应;记住平面直角坐标系中特殊位置的点的坐标特征.2、【解析】【分析】“帅”对应的数对(1,0),“象”对应的数对(3,−2),可建立平面直角坐标系;如图,以“马”为原点,连接“马”、“帅”为x轴,垂直于x轴并过“马”为y轴;进而确定“卒”对应的数对.【详解】解:由题意中的“帅”与“象”对应的数对,建立如图的直角坐标系∴可知“卒”对应的数对为;故答案为:.【点睛】本题考查了有序数对与平面直角坐标系中点的位置.解题的关键在建立正确的平面直角坐标系.3、或【解析】【分析】借助坐标系内三角形底和高的确定,利用三角形面积公式求解.【详解】解:如图,S1=×|yP−yA|×1,S2=×2×1=1,∵S1≥S2,∴|yP-1|≥3,解得:yP≤-2或yP≥4.【点睛】本题主要考查坐标系内三角形面积的计算,关系是确定三角形的底和高.4、y=1【解析】【分析】根据平行于x轴的直线上所有点纵坐标相等,又直线经过点Q(0,1),则该直线上所有点的共同特点是纵坐标都是1.【详解】解:∵所求直线经过点Q(0,1)且平行于x轴,∴该直线上所有点纵坐标都是1,故可以表示为直线y=1,故答案为:y=1.【点睛】本题考查了平行于坐标轴的直线上点的坐标特点:平行于x轴的直线上所有点纵坐标相等,平行于y轴的直线上所有点横坐标相等.5、2【解析】【分析】由点到坐标轴的距离定义可知点到轴的距离是2.【详解】解:∵点A的纵坐标为-2∴点到轴的距离是故答案为:2.【点睛】本题考查了点到坐标轴的距离,点P的坐标为,那么点P到x轴的距离为这点纵坐标的绝对值,即,点P到y轴的距离为这点横坐标的绝对值,即.三、解答题1、见解析【解析】【分析】先在平面直角坐标系中,分别描出点A(﹣3,1),B(﹣2,0),C(0,1),再顺次连接,可得△ABC,然后求出点A(﹣3,1),B(﹣2,0),C(0,1)关于y轴对称的点分别为,再顺次连接,可得与△ABC关于y轴对称的图形,即可求解.【详解】解:画出图形如下图所示:根据题意得:点A(﹣3,1),B(﹣2,0),C(0,1)关于y轴对称的点分别为 .【点睛】本题主要考查了在平面直角坐标系中描点,画轴对称图形,熟练掌握若两点关于y轴对称,则横坐标互为相反数,纵坐标不变是解题的关键.2、 (1)8(2)4(3)①4个;②有,2【解析】【分析】(1)先求出OA,OB,然后利用三角形面积公式计算即可(2)过点E作的延长线于点G,根据.利用同角的余角性质得出.根据△BDE是等腰直角三角形得出,可证,可得,.证出,得出即可;(3)①以点O为圆心ON长为半径画圆交AF于M1,M4,ON=OM1,△ONM1是等腰三角形,ON=OM4,△ONM4是等腰三角形,ON的垂直平分线与AF的交点M2,M2N=OM2,以点N为圆心NO为半径画圆交AF于M3,则NM3=ON,△ONM3是等腰三角形即可;②过点O作AF的垂线交AF于点G,交AE于点.过点作x轴的垂线,交AF于点M,交x轴于点N.此时点M,N即为所求.在AF上任取一点(异于点M),根据AF平分,,得出,,可证AG垂直平分,得出,则有,由垂线段最短有,此时值最小.在中,又,求出即可.(1)解:∵,,∴,∴;(2)解:过点E作的延长线于点G,∴.∵,,∴.∵△BDE是等腰直角三角形,∴,在和中,,∴,∴,.∴,即,∴,∴.∵,∴,∴.(3)①以点O为圆心ON长为半径画圆交AF于M1,M4,ON=OM1,△ONM1是等腰三角形,ON=OM4,△ONM4是等腰三角形,ON的垂直平分线与AF的交点M2,M2N=OM2,以点N为圆心NO为半径画圆交AF于M3,则NM3=ON,△ONM3是等腰三角形,∴这样的点M有4个.②过点O作AF的垂线交AF于点G,交AE于点.过点作x轴的垂线,交AF于点M,交x轴于点N.此时点M,N即为所求.若在AF上任取一点(异于点M),∵AF平分,,∴,,∴,∴,∴AG垂直平分,∴,点到x轴的最短距离为过点作x轴的垂线段,垂足为,有,由垂线段最短有,∴此时值最小.在中,又,∴,∴有最小值为2.【点睛】本题考查两点间距离,三角形面积,垂线性质,同角余角性质,等腰直角三角形性质与判定,三角形全等判定与性质,等腰三角形作图,线段垂直平分线,角平分线,最短路径,30°直角三角形性质,掌握以上知识是解题关键.3、 (1)见解析(2)(3)见解析(4)【解析】【分析】(1)根据A,B两点坐标确定平面直角坐标系即可;(2)把三角形的面积看成矩形面积减去周围三个三角形面积即可;(3)根据轴对称的性质找到对应点,顺次连接即可;(4)作点A关于x轴的对称点A′,连接BA′交x轴于点P,此时AP+BP最小.【小题1】解:如图,平面直角坐标系如图所示;【小题2】如图,△ABC即为所求,S△ABC==;【小题3】如图,△A1B1C1即为所求;【小题4】如图,点P即为所求,AP+BP=A′P+PB= A′B==.【点睛】本题考查作图-轴对称变换,勾股定理、轴对称最短问题等知识,解题的关键是熟练掌握轴对称变换的性质,属于中考常考题型.4、 (1)见解析,点E的坐标为(0,1)(2)平行且相等(3)△BCD的面积为14【解析】【分析】(1)根据题意得:A(﹣1,3),B(﹣4,2),C(﹣2,﹣2)先向右平移4个单位长度,再向下平移1个单位长度的对应点为,再顺次连接,即可求解;(2)根据线段AC与DF是平移前后的对应线段,即可求解;(3)以 为底,则高为4,即可求解.(1)根据题意得:A(﹣1,3),B(﹣4,2),C(﹣2,﹣2)先向右平移4个单位长度,再向下平移1个单位长度的对应点为, 如图所示,△DEF即为所求;(2)线段AC与DF的关系为平行且相等,理由如下:∵将△ABC先向右平移4个单位长度,再向下平移1个单位长度得到△DEF,∴线段AC与DF是对应线段,∴线段AC与DF平行且相等;(3)S△BCD=×7×4=14.【点睛】本题主要考查了图形的变换——平移,熟练掌握图形平移前后对应段相等,对应角相等是解题的关键.5、 (1)(2)(3)【解析】【分析】(1)如图,过点D作DE⊥OA于点E.解直角三角形求出OE,DE,可得结论;(2)如图②,过点C作CT⊥OA于点T,解直角三角形求出OT,CT可得结论;(3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.利用勾股定理构建方程求出m,可得结论.(1)如图,过点作,垂足为.∵ ,,∴ ,,.∵ ,∴ .在中,由,得.解得.∴ ,.∵ 是由旋转得到的,∴ ,.∴ .∴ .∴ .在中,.∴ 点的坐标为.(2)如图,过点作,垂足为.由已知,得.∴ .∴ .∵ 是由旋转得到的,∴ .在中,由,得.∴ 点的坐标为.(3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.∵∠DOC=30°,∠COT=45°,∴∠DOJ=75°,∴∠ODJ=90°-75°=15°,∵KD=KO,∴∠KDO=∠KOD=15°,∴∠OKJ=∠KDO+∠KOD=30°,∴OK=DK=2m,KJ=m,∵OD2=OJ2+DJ2,∴22=m2+(2m+m)2,解得m=(负根已经舍弃),∴OJ=,DJ=,∴D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课时作业,共24页。试卷主要包含了点关于轴对称点的坐标为,若点P,下列各点中,在第二象限的点是等内容,欢迎下载使用。
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试精练,共26页。试卷主要包含了12,则第三边长为13;,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共22页。试卷主要包含了下列命题为真命题的是,在平面直角坐标系中,点P,若点在轴上,则点的坐标为,在平面直角坐标系中,点在等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)