数学八年级下册第二十章 函数综合与测试课时作业
展开
这是一份数学八年级下册第二十章 函数综合与测试课时作业,共20页。试卷主要包含了函数中,自变量x的取值范围是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列关系中,一定能称是x的函数的是( )A.y2=4x B.|y|=x-2 C.y=|x|-3 D.y4=64x2、函数y=的自变量x的取值范围是( )A.x≠0 B.x≠1 C.x≠±1 D.全体实数3、甲、乙两只气球分别从不同高度同时匀速上升30min,气球所在的位置距离地面的高度h(单位:m)与气球上升的时间t(单位:min)之间的函数关系式如图所示.下列说法正确的是( )A.10min时,两只气球都上升了30m B.乙气球的速度为3m/minC.30min时,乙气球离地面的高度为60m D.30min时,甲乙两只气球的高度差为20m4、某商场降价销售一批名牌球鞋,已知所获利润y(元)与降价金额x(元)之间满定函数关系式y=﹣x2+50x+600,若降价10元,则获利为( )A.800元 B.600元 C.1200元 D.1000元5、函数中,自变量x的取值范围是( )A. B. C. D.6、函数y=中的自变量x的取值范围是( )A.x>0 B.x≥﹣1 C.x>0且x≠﹣1 D.x≥﹣1且x≠07、下列各表达式不是表示y是x的函数的是( )A. B.C. D.8、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )A. B.C. D.9、汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数.如图描述了、两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是( )A.消耗1升汽油,车最多可行驶5千米B.车以40千米小时的速度行驶1小时,最少消耗4升汽油C.对于车而言,行驶速度越快越省油D.某城市机动车最高限速80千米小时,相同条件下,在该市驾驶车比驾驶车更省油10、函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.…………小明根据他的发现写出了以下三个命题:①当时,函数图象关于直线对称;②时,函数有最小值,最小值为;③时,函数的值随点的增大而减小.其中正确的是( )A.①② B.①③ C.②③ D.①②③第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、函数 的定义域是________.2、已知抛物线y=x2﹣x﹣3与x轴的一个交点为(m,0),则代数式2m2﹣2m+2019的值为_____.3、向平静的水面投入一枚石子会激起一圈圈圆形涟漪,当圆形涟漪的半径r从3cm变成6cm时,圆形的面积S从________cm2变成________cm2.这一变化过程中________是自变量,________是关于自变量的函数.4、学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.5、定义:用_______来表示函数关系的方法叫做列表法.列表法一目了然,使用起来比较方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律.三、解答题(5小题,每小题10分,共计50分)1、如图是一位病人的体温记录图,看图回答下列问题:(1)自变量是 ,因变量是 ;(2)护士每隔 小时给病人量一次体温;(3)这位病人的最高体温是 摄氏度,最低体温是 摄氏度;(4)他在4月8日12时的体温是 摄氏度;(5)图中的横虚线表示的含义.2、如果用c表示摄氏温度(),f表示华氏温度(),则c和f之间的关系是:.某日伦敦和纽约的最高气温分别为和,请把它们换算成摄氏温度.3、综合与实践:制作一个无盖长方形盒子.用一张正方形的纸片制成一个如图的无盖长方体纸盒.如果我们按照如图所示的方式,将正方形的四个角减掉四个大小相同的小正方形,然后沿虚线折起来,就可以做成一个无盖的长方体盒子.(1)如果原正方形纸片的边长为a cm,剪去的正方形的边长为b cm,则折成的无盖长方体盒子的高为________cm,底面积为_______cm2,请你用含a,b的代数式来表示这个无盖长方体纸盒的容积__________cm3;(2)如果a=20cm,剪去的小正方形的边长按整数值依次变化,即分别取1cm,2cm,3cm,4cm,5cm,6cm,7cm,8cm,9cm,10cm时,折成的无盖长方体的容积分别是多少?请你将计算的结果填入下表;剪去正方形的边长/cm12345678910容积/cm3324512__________500384252128360(3)观察绘制的统计表,你发现,随着减去的小正方形的边长的增大,所折无盖长方体盒子的容积如何变化?( )A.一直增大 B.一直减小C.先增大后减小 D.先减小后增大(4)分析猜想当剪去图形的边长为__________时,所得的无盖长方体的容积最大,此时无盖长方体的容积是____________cm3.(5)对(2)中的结果,你觉得表格中的数据还有什么要改进的地方吗?4、小明在劳动技术课中要制作一个周长为80的等腰三角形.请你写出底边长()与腰长()的函数关系式,并求自变量的取值范围.5、小亮现已存款100元.为赞助“希望工程”,他计划今后三年每月存款10元.存款总金额y(单位:元)将随时间x(单位:月)的变化而改变.指出其中的常量与变量,自变量与函数,并写出函教解析式. -参考答案-一、单选题1、C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数.【详解】解:根据函数概念可得:在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应可得C中y是x的函数,故选:C.【点睛】此题主要考查了函数的概念,关键是掌握函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.2、D【解析】【分析】由题意直接依据分母不等于0进行分析计算即可.【详解】解:由题意可得,所以自变量x的取值范围是全体实数.故选:D.【点睛】本题考查求函数自变量x的取值范围以及分式有意义的条件,注意掌握分式有意义的条件即分母不等于0是解题的关键.3、D【解析】【分析】根据题意和函数中的数据,可以计算出甲、乙两只气球的速度,然后即可判断各个选项中的说法是否正确.【详解】解:由图象可得,10min时,甲气球上升了m,乙气球上升了−=20(m),故选项A错误;甲气球的速度为:÷=(m/ min),乙气球的速度为:(−)÷=(m/ min),故选项B错误;30min时,乙气球距离地面的高度是+(m),故选项C错误;则30min时,两架无人机的高度差为:()−(+)=20(m),故选项D正确;故选:D.【点睛】本题考查一次函数的应用,计算出甲、乙两架无人机的速度是解答本题的关键,利用数形结合的思想解答.4、D【解析】【分析】将代入函数关系式即可得.【详解】解:将代入得:,即获利为1000元,故选:D.【点睛】本题考查了求函数的函数值,熟练掌握函数值的求法是解题关键.5、B【解析】【分析】根据分母不为零,函数有意义,可得答案.【详解】解:函数有意义,得,解得,故选:B.【点睛】本题考查了函数自变量的取值范围,解题的关键是掌握分母不为零.6、D【解析】【分析】根据二次根式被开方数大于或等于0和分母不为0列不等式组即可.【详解】解:由题意得:x+1≥0且x≠0,解得:x≥-1且x≠0,故选:D.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.7、C【解析】略8、D【解析】【分析】根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.【详解】解:过点A作AD′⊥BC于点D′,如图,由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可知,D选项是正确的;故选:D.【点睛】本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.9、B【解析】【分析】根据题意和函数图象可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:A、由图象可知,当车速度超过时,燃油效率大于,所以当速度超过时,消耗1升汽油,车行驶距离大于5千米,故此项不合理,不符合题意;B、车以40千米小时的速度行驶1小时,路程为,,最少消耗4升汽油,此项合理,符合题意;C、对于车而言,行驶速度在时,越快越省油,故此项不合理,不符合题意;D、某城市机动车最高限速80千米小时,相同条件下,在该市驾驶车比驾驶车燃油效率更高,所以更省油,故此项不合理,不符合题意.故选:B.【点睛】本题考查函数的图象,解题的关键是明确题意,利用数形结合的思想解答.10、C【解析】【分析】(1)把,代入 求出、,画出函数图像,函数图象关于直线对称,则横纵坐标交换位置,即可判断①;根据图像可判断②③.【详解】把,代入 得:,画出函数图像如图所示:当时,;当时,,故①错误;由图像可得出:②③正确.故选:C.【点睛】函数的图像与性质,根据表格画函数图像,掌握对称的性质是解题的关键.二、填空题1、x≠-1【解析】【分析】根据分母不为零,即可求得定义域.【详解】解:由题意, 即 故答案为:【点睛】本题考查了使函数有意义的自变量的取值范围,即函数的定义域,对于分母中含有未知数的函数解析式,必须考虑其分母不为零.2、2025【解析】【分析】首先把(m,0)代入y=x2-x-3可得m2-m=3,进而可得2m2﹣2m+2019的值.【详解】解:∵抛物线y=x2﹣x﹣3,与x轴的一个交点为(m,0),∴m2-m-3=0,随意m2-m=3,2m2﹣2m+2019=2(m2﹣m)+2019=6+2019=2025.故答案为2025.【点睛】本题考查了二次函数图象上点的坐标特征,根据点在抛物线上得出m2-m-3=0是解题的关键.3、 9π 36π 半径 面积【解析】【分析】先列出在这一变化过程中两圆的面积公式即可求解.【详解】解:当r=3时,圆的面积为9π;当r=6时,圆的面积为36π;这一变化过程中半径是自变量,面积是半径的函数.故答案是:9π,36π,半径,面积.【点睛】考查了函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量:在一程序变化过程中随时可以变化的量.常量:在一程序变化过程中此量的数值始终是不变的.4、1760【解析】【分析】根据函数图象可知,小明出发2分钟后走了160米,据此可得小明原来的速度,进而得出小明回时的速度.【详解】解:小明离家2分钟走了160米,∴小明初始速度为160÷2=80米/分;小明返回家速度为80×2=160米/分,妈妈继续行进速度80÷2=40米/分;小明在家换衣服3分钟时间,妈妈走了40×3=120米,设小明换好衣服离开家到与妈妈同时到达学校的时间为t分,则有160t=1200+120+40t,∴t=11,∴小明离家距离为11×160=1760米.故答案为:1760米.【点睛】本题主要是考查了从函数图像获取信息,解题的关键是根据题意正确分析出函数图像中的数据.5、表格【解析】略三、解答题1、(1)时间,体温;(2)6;(3)39.5,36.8;(4)37.5;(5)人的正常体温【解析】【分析】(1)根据折线统计图的特点解答即可;(2)根据横轴的特点即可求解;(3)根据折线统计图的特点即可求解;(4)根据折线统计图的特点即可求解;(5)根据折线统计图的特点即可求解.【详解】解:(1)自变量是时间,因变量是体温;(2)护士每隔6小时给病人量一次体温;(3)这位病人的最高体温是39.5摄氏度,最低体温是36.8摄氏度;(4)他在4月8日12时的体温是37.5摄氏度;(5)图中的横虚线表示人的正常体温;故答案为:时间;体温;6;39.5;36.8;37.5.【点睛】此题主要考查了常量和变量以及折线统计图,关键是正确从统计图中获取信息.2、,【解析】【分析】分别把华氏温度代入关系式计算即可得到答案.【详解】解:将代入中,解得:,将代入中,解得:,所以伦敦和纽约的温度换算成摄氏温度为:摄氏度,摄氏度.【点睛】本题考查了函数值的求解,将自变量的值代入函数关系式中即可,解题的关键是计算正确.3、 (1)b;(a-2b)2;b(a-2b)2(2)588;576(3)C(4)3;588(5)表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位【解析】【分析】(1)根据截去的小正方形边长,得出无盖长方体盒子的高为bcm,然后求出底面边长,再求底面积,和体积即可;(2)根据截去的边长,求出底面边长,再求出无盖的长方体盒子的体积即可;(3)根据表格的信息可得随着减去的小正方形的边长的增大,得出无盖长方体盒子的容积变化规律;(4)根据表格得出截去小正方形边长为整数3时,体积最大,计算即可;(5)根据精确度要求越高,无盖长方体盒子的容积会更大些.(1)解:无盖长方体盒子的高就是截去的小正方形边长,无盖长方体盒子的高为bcm,底面边长(a-2b)cm,底面面积为(a-2b)2cm2, 做成一个无盖的长方体盒子的体积为b(a-2b)2cm3,故答案为:b;(a-2b)2;b(a-2b)2.(2)解:当b=3cm, a-2b=20-6=14cm,b(a-2b)2=3×142=588cm3,当b=4,a-2b=20,8=12cm,b(a-2b)2=4×122=576cm3,故答案为:588;576.(3)解:随着减去的小正方形的边长的增大,所折无盖长方体盒子的容积先变大,再变小.故选择C.(4)根据无盖长方体盒子的容积的变化,截去的正方形边长在3cm时,无盖长方体盒子的容积最大588cm3.故答案为3,588.(5)根据无盖长方体盒子的容积的变化,截去的正方形边长在3与4之间时,无盖长方体盒子的容积最大;当x=3,5时,b(a-2b)2=3.5×(20-2×3.5)2=591.5cm3,当时,b(a-2b)2=3.25×(20-2×3.25)2=592.3125cm3,当时,b(a-2b)2=3.375×(20-2×3.375)2=592.5234375cm3,当剪去图形的边长为3.3cm时,所得的无盖长方体的容积最大,此时无盖长方体的容积是592.548cm3.因此表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位.【点睛】本题考查无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题,掌握无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题是解题关键.4、【解析】【分析】由等腰三角形的周长=腰长×2+底长,可得出函数关系式.求自变量的取值范围时可根据三角形的三边关系来解(三角形两边的和大于第三边,两边的差小于第三边).【详解】解:由题意得,=80,所以,y=80-2x,由于三角形两边之和大于第三边,且边长大于0,所以,解得,所以.【点睛】本题考查了一次函数的应用,本题中求自变量的取值范围时要注意三角形三边关系的运用.5、常量为100,10,变量为x,y,自变量为x,y是x的函数,函数解析式为(,x为整数).【解析】【分析】根据“存款数=现有存款+每月的存款”,由每月的存款为10元,则x月的存款为10x元,继而可得出,从而求解.【详解】解:由题意得,存款总金额,常量为100,变量为x,y,自变量为x,y是x的函数,函数解析式为,(,x为整数).【点睛】本题考查了根据实际问题抽象一次函数解析式的知识,属于基础题,注意理解函数中的变量,自变量及自变量的取值范围的计算.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后作业题,共21页。试卷主要包含了当时,函数的值是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试当堂达标检测题,共22页。试卷主要包含了如图,某汽车离开某城市的距离y等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十章 函数综合与测试达标测试,共20页。试卷主要包含了函数中,自变量x的取值范围是,当时,函数的值是,在函数中,自变量的取值范围是等内容,欢迎下载使用。