(通用版)中考数学一轮总复习突破训练:第10讲《一次函数》(原卷版)
展开
这是一份(通用版)中考数学一轮总复习突破训练:第10讲《一次函数》(原卷版),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题
1.若一个正比例函数的图象经过A(3,-6),B(m,-4)两点,则m的值为( )
A.2 B.8 C.-2 D.-8
2.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能( )
3.若直线y=kx+k+1经过点(m,n+3)和(m+1,2n-1),且0<k<2,则n的值可以是( )
A.3 B.4 C.5 D.6
4.将一次函数y=2x-3的图象沿y轴向上平移8个单位长度,所得直线的解析式为( )
A.y=2x-5 B.y=2x+5 C.y=2x+8 D.y=2x-8
5.如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是( )
A.x>2 B.x<2 C.x>-1 D.x<-1
6.如图,在平面直角坐标系中,点P(-eq \f(1,2),a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是( )
A.2<a<4 B.1<a<3 C.1<a<2 D.0<a<2
7.如图,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(-2,0),则k的取值范围是( )
A.-2<k<2 B.-2<k<0 C.0<k<4 D.0<k<2
二、填空题
8.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是 (写出一个即可).
9.在平面直角坐标系中,已知一次函数y=x-1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 y2(填“>”,“<”或“=”)
10.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为 .
11.如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx-6<ax+4<kx的解集为 .
12.如图,将直线y=-x沿y轴向下平移后的直线恰好经过点A(2,-4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为 .
三、解答题
13.(11分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).
(1)当-2<x≤3时,求y的取值范围;
(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.
14.(11分)张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择,如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x个甲种文具时,需购买y个乙种文具.
(1)①当减少购买1个甲种文具时,x= ,y= ;
②求y与x之间的函数表达式.
(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元,甲、乙两种文具各购买了多少个?
15.(12分)为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2000户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:
(1)为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?
(2)若将(1)中确定的基本用水量及其以内的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费.设x表示每户每月用水量(单位:m3),y表示每户每月应交水费(单位:元),求y与x的函数关系式;
(3)某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米?
16.(12分)我市在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.
(1)求购买A,B两种树苗每棵各需多少元?
(2)考虑到绿化效果和资金周转,购进A种树苗不能少于50棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?
(3)某包工队承包种植任务,若种好一棵A种树苗可获工钱30元,种好一棵B种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?
B卷
1.(3分)如图,平面直角坐标系xOy中,点A是直线y=eq \f(\r(3),3)x+eq \f(4\r(3),3)上一动点,将点A向右平移1个单位得到点B,点C(1,0),则OB+CB的最小值为 .
2.(11分)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.
(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式;
(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?
(3)在(2)的前提下,该企业决定投资不超过获得最大利润的eq \f(1,8)在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?
3.(12分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代
销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.
(1)第24天的日销售量是 件,日销售利润是 元;
(2)求y与x之间的函数关系式,并写出x的取值范围;
(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?
4.操作:“如图①,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.
(1)点P(a,b)经过T变换后得到的点Q的坐标为 ;若点M经过T变换后得到点N(6,-eq \r(3)),则点M的坐标为 ;
(2)A是函数y=eq \f(\r(3),2)x图象上异于原点O的任意一点,经过T变换后得到点B.
①求经过点O,点B的直线的函数表达式;
②如图②,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.
用户每月用水量(m3)
32及
其以下
33
34
35
36
37
户数(户)
200
160
180
220
240
210
用户每月用水量(m3)
38
39
40
41
42
43及
其以上
户数(户)
190
100
170
120
100
110
相关试卷
这是一份(通用版)中考数学一轮总复习突破训练:第28讲《概率》(原卷版),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份(通用版)中考数学一轮总复习突破训练:第27讲《统计》(原卷版),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份(通用版)中考数学一轮总复习突破训练:第7讲《分式方程》(原卷版),共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。