终身会员
搜索
    上传资料 赚现金
    46《不等式与一次不等式组》全章复习与巩固(提高)知识讲解
    立即下载
    加入资料篮
    46《不等式与一次不等式组》全章复习与巩固(提高)知识讲解01
    46《不等式与一次不等式组》全章复习与巩固(提高)知识讲解02
    46《不等式与一次不等式组》全章复习与巩固(提高)知识讲解03
    还剩5页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    46《不等式与一次不等式组》全章复习与巩固(提高)知识讲解

    展开
    这是一份46《不等式与一次不等式组》全章复习与巩固(提高)知识讲解,共8页。教案主要包含了学习目标,知识网络,要点梳理,典型例题,答案与解析,总结升华,思路点拨等内容,欢迎下载使用。

    1.理解不等式的有关概念,掌握不等式的三条基本性质;
    2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;
    3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;
    4.会根据题中的不等关系建立不等式(组),解决实际应用问题;
    5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.
    【知识网络】
    【要点梳理】
    要点一、不等式
    1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.
    要点诠释:
    (1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.
    (2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.
    解集的表示方法一般有两种:一种是用最简的不等式表示,例如,等;另一种是用数轴表示,如下图所示:
    (3)解不等式:求不等式的解集的过程叫做解不等式.
    2. 不等式的性质:
    不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.
    用式子表示:如果a>b,那么a±c>b±c
    不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.
    用式子表示:如果a>b,c>0,那么ac>bc(或).
    不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.
    用式子表示:如果a>b,c<0,那么ac<bc(或).
    要点二、一元一次不等式
    1. 定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,
    要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.
    2.解法:
    解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.
    要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.
    3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:
    (1)审:认真审题,分清已知量、未知量;
    (2)设:设出适当的未知数;
    (3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;
    (4)列:根据题中的不等关系,列出不等式;
    (5)解:解出所列的不等式的解集;
    (6)答:检验是否符合题意,写出答案.
    要点诠释:
    列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.
    要点三、一元一次不等式组
    关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.
    要点诠释:
    (1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.
    (2)解不等式组:求不等式组解集的过程,叫做解不等式组.
    (3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.
    (4)一元一次不等式组的应用: ①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.
    【典型例题】
    类型一、不等式
    1. (2015春•天津期末)判断以下各题的结论是否正确(对的打“√”,错的打“×”).
    (1)若 b﹣3a<0,则b<3a;
    (2)如果﹣5x>20,那么x>﹣4;
    (3)若a>b,则 ac2>bc2;
    (4)若ac2>bc2,则a>b;
    (5)若a>b,则 a(c2+1)>b(c2+1).
    (6)若a>b>0,则<. .
    【答案与解析】
    解:(1)若由b﹣3a<0,移项即可得到b<3a,故正确;
    (2)如果﹣5x>20,两边同除以﹣5不等号方向改变,故错误;
    (3)若a>b,当c=0时则 ac2>bc2错误,故错误;
    (4)由ac2>bc2得c2>0,故正确;
    (5)若a>b,根据c2+1,则 a(c2+1)>b(c2+1)正确.
    (6)若a>b>0,如a=2,b=1,则<正确.
    故答案为:√、×、×、√、√、√.
    【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.
    2. 设x>y,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x或y的值是多少?
    【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。
    【答案与解析】
    解:可利用作差比较法比较大小.
    -(8-l0x)-[ -(8-l0y)]
    =-8+10x+8-10y
    =10x -10y.
    ∵x>y,∴10x>10y,∴10x -10y>0
    ∴-(8-l0x)>-(8-l0y).
    按题意-(8-l0x)>0,则10x>8.
    ∴.
    ∴x的最小正整数值是1.
    【总结升华】两个数量的大小可以通过它们的差来判断:



    举一反三:
    【变式】己知:x<0.5,比较2-4x和18x-9的大小.
    【答案】
    解:∵2-4x-(18x-9)=11-22x
    而又∵x<0.5,∴-22x>-11
    即11-22x>0
    ∴2-4x>18x-9
    类型二、一元一次不等式
    3. 已知关于x的不等式的解集是,求a的取值范围.
    【答案与解析】
    解:法一:,

    ∵它的解集为,
    , .
    法二:是关于x方程 的解,
    ,解得
    .
    【总结升华】不等式解集中的端点值就是对应方程的解.
    举一反三:
    【变式1】如果关于x的不等式正整数解为1、2、3, 则正整数k应取怎样的值?
    【答案】解不等式得:
    ∵k为正整数且中的正整数解为1,2,3

    ∴.
    【变式2】(2015•江都)如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是 .
    【答案】解:∵(a+1)x>a+1的解集为x<1,
    ∴a+1<0,
    ∴a<﹣1.
    类型三、一元一次不等式组
    4. 求不等式组的整数解.
    【思路点拨】分别解出各不等式,取所有的公共部分.
    【答案与解析】
    解:
    解不等式①得:x<2
    解不等式②得:x≥-1
    解不等式③得:x>-2
    ∴不等式组的解集为-1≤x<2
    故不等式组的整数解为-1,0,1
    【总结升华】求不等式组的特殊解的一般步骤是先求出不等式组的解集,再从中找出符合要求的特殊解.
    举一反三:
    【变式】若关于不等式组只有四个整数解,求a的取值范围.
    【答案】
    解:由,得,
    由,得,
    ∴不等式组的解集为,
    ∵只有四个整数解,∴,即,
    ∴a的取值范围:.
    5. 某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台.三种家电的进价和售价如下表所示:

    (1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?
    (2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?
    【思路点拨】 (1)设购进电视机、冰箱各x台,则洗衣机为(15-2x)台.根据两个关键词:“不大于”、“不超过”就可以建立不等式组,根据x的取值讨论确定进货方案.(2)分别求出(1)中各方案所需的补贴,再比较确定国家财政的最多补贴.
    【答案与解析】
    解:(1)设购进电视机、冰箱各x台.
    依题意,得
    解这个不等式组得,6≤x≤7
    ∵ x为正整数.∴ x=6或7.
    方案一:购进电视机和冰箱各6台,洗衣机3台;
    方案二:购进电视机和冰箱各7台,洗衣机1台.
    (2)方案1需补贴:
    (6×2100+6×2500+3×1700)×13%=4251(元).
    方案二需补贴:
    (7×2100+7×2500+1×1700)×13%=4407(元).
    ∴ 国家财政最多需补贴农民4407元.
    【总结升华】利用不等式解答实际问题的策略是:①根据题意构建不等式(组);解这个不等式(组);②由不等式(组)的整数解的个数确定方案.
    类型四、综合应用
    6.已知不等式组的解集为,试求m,n的值.
    【答案与解析】
    解:解不等式,得.
    解不等式 n-4(x-1)<1,得.
    因为不等式组的解集为,
    所以有, ∴ .
    答:m、n的值分别1和3.
    【总结升华】先分别求出每一个不等式的解集,再求出这个不等式组的解集,然后根据题意,建立关于m、n的方程求解.
    7.潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:
    说明:不同种植户种植的同类蔬菜每亩平均收入相等.
    (1)求A、B两类蔬菜每亩平均收入各是多少元?
    (2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.
    【答案与解析】
    解:(1)设A、B两类蔬菜每亩平均收入分别是x元,y元.
    由题意得: 解得
    答:A、B两类蔬菜每亩平均收入分别是3000元,3500元.
    (2)设用来种植A类蔬菜的面积a亩,则用来种植B类蔬菜的面积为(20-a)亩.
    由题意得:
    解得:10<a≤14.
    ∵ a取整数为:11、12、13、14.
    ∴ 租地方案为:
    【总结升华】本题考查了二元一次方程组的应用和一元一次不等式组的应用,读懂统计表,能够从统计表中获得正确信息,及熟练解方程组和不等式组是解题的关键.
    举一反三:
    【变式】某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.
    (1)求甲、乙两种花木每株成本分别为多少元?
    (2)据市场调研,1株甲种花木售价为760元, 1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?
    【答案】
    解:(1)设甲、乙两种花木的成本价分别为x元和y元.
    由题意得:, 解得: .
    (2)设种植甲种花木为a株,则种植乙种花木为(3a+10)株.
    则有:
    解得:
    由于a为整数,∴a可取18或19或20,所以有三种具体方案:
    = 1 \* GB3 ①种植甲种花木18株,种植乙种花木3a+10=64株;
    = 2 \* GB3 ②种植甲种花木19株,种植乙种花木3a+10=67株;
    = 3 \* GB3 ③种植甲种花木20株,种植乙种花木3a+10=70株. 价格
    种类
    进价(元/台)
    售价(元/台)
    电视机
    2000
    2100
    冰 箱
    2400
    2500
    洗衣机
    1600
    1700
    种植户
    种植A类蔬菜面积(单位:亩)
    种植B类蔬菜面积(单位:亩)
    总收入(单位:元)

    3
    1
    12500

    2
    3
    16500
    类别
    种植面积单位:(亩)
    A
    11
    12
    13
    14
    B
    9
    8
    7
    6
    相关教案

    16实数全章复习与巩固(提高)知识讲解: 这是一份16实数全章复习与巩固(提高)知识讲解,共7页。教案主要包含了学习目标,知识网络,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。

    45《不等式与一次不等式组》全章复习与巩固(基础)知识讲解: 这是一份45《不等式与一次不等式组》全章复习与巩固(基础)知识讲解,共7页。教案主要包含了学习目标,知识网络,要点梳理,典型例题,答案与解析,总结升华,思路点拨等内容,欢迎下载使用。

    36《二元一次方程组》全章复习与巩固(提高)知识讲解: 这是一份36《二元一次方程组》全章复习与巩固(提高)知识讲解,共11页。教案主要包含了学习目标,知识网络,要点梳理,典型例题,思路点拨,总结升华,答案与解析等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map