所属成套资源:2022高考数学一轮总复习第一章集合与常用逻辑用语3讲+第二章函数概念与基本初等函数11讲
2022高考数学一轮总复习第二章函数概念与基本初等函数第5讲二次函数与幂函数集训含解析文
展开
这是一份2022高考数学一轮总复习第二章函数概念与基本初等函数第5讲二次函数与幂函数集训含解析文,共6页。
[A级 基础练]
1.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则a的值为( )
A.-1 B.0
C.1 D.-2
解析:选D.函数f(x)=-x2+4x+a的对称轴为直线x=2,开口向下,f(x)=-x2+4x+a在[0,1]上单调递增,则当x=0时,f(x)的最小值为f(0)=a=-2.
2.设函数f(x)=xeq \s\up8(\f(2,3)),若f(a)>f(b),则( )
A.a2>b2 B.a2f(b),所以a2>b2.故选A.
3.一次函数y=ax+b与二次函数y=ax2+bx+c在同一直角坐标系中的图象大致是( )
解析:选C.若a>0,则一次函数y=ax+b为增函数,二次函数y=ax2+bx+c的图象开口向上,故可排除A;若a0,b>0,从而-eq \f(b,2a)f(1),则( )
A.a>0,4a+b=0 B.a0,2a+b=0 D.af(1),f(4)>f(1),所以f(x)先减后增,于是a>0,故选A.
5.若函数y=x2-3x-4的定义域为[0,m],值域为eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(25,4),-4)),则m的取值范围是( )
A.[0,4] B.eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3,2),4))
C.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(3,2),+∞)) D.eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3,2),3))
解析:选D.二次函数图象的对称轴为x=eq \f(3,2),且feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))=-eq \f(25,4),f(3)=f(0)=-4,结合函数图象(如图所示)可得m∈eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3,2),3)).
6.已知函数f(x)=(m2-m-1)xm2-2m-3是幂函数,且在x∈(0,+∞)上递减,则实数m=________.
解析:根据幂函数的定义和性质,得m2-m-1=1.
解得m=2或m=-1,
当m=2时,f(x)=x-3在(0,+∞)上是减函数,符合题意;
当m=-1时,f(x)=x0=1在(0,+∞)上不是减函数,
所以m=2.
答案:2
7.已知二次函数的图象与x轴只有一个交点,对称轴为x=3,与y轴交于点(0,3),则它的解析式为________.
解析:由题意知,可设二次函数的解析式为y=a(x-3)2,又图象与y轴交于点(0,3),
所以3=9a,即a=eq \f(1,3).
所以y=eq \f(1,3)(x-3)2=eq \f(1,3)x2-2x+3.
答案:y=eq \f(1,3)x2-2x+3
8.已知二次函数f(x)满足f(2+x)=f(2-x),且f(x)在[0,2]上是增函数,若f(a)≥f(0),则实数a的取值范围是________.
解析:由f(2+x)=f(2-x)可知,函数f(x)图象的对称轴为x=eq \f(2+x+2-x,2)=2,又函数f(x)在[0,2]上单调递增,所以由f(a)≥f(0)可得0≤a≤4.
答案:[0,4]
9.已知函数f(x)=x2+(2a-1)x-3.
(1)当a=2,x∈[-2,3]时,求函数f(x)的值域;
(2)若函数f(x)在[-1,3]上的最大值为1,求实数a的值.
解:(1)当a=2时,f(x)=x2+3x-3,x∈[-2,3],
对称轴x=-eq \f(3,2)∈[-2,3],
所以f(x)min=feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,2)))=eq \f(9,4)-eq \f(9,2)-3=-eq \f(21,4),
f(x)max=f(3)=15,
所以函数f(x)的值域为eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(21,4),15)).
(2)对称轴为x=-eq \f(2a-1,2).
①当-eq \f(2a-1,2)≤1,即a≥-eq \f(1,2)时,
f(x)max=f(3)=6a+3,
所以6a+3=1,即a=-eq \f(1,3)满足题意;
②当-eq \f(2a-1,2)>1,即a2x+m恒成立;
即x2-3x+1>m在区间[-1,1]上恒成立.
所以令g(x)=x2-3x+1=eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(3,2)))eq \s\up12(2)-eq \f(5,4),
因为g(x)在[-1,1]上的最小值为g(1)=-1,
所以m
相关试卷
这是一份2022高考数学一轮总复习第二章函数概念与基本初等函数第11讲函数模型及其应用集训含解析文,共9页。
这是一份2022高考数学一轮总复习第二章函数概念与基本初等函数第2讲函数的单调性与最值集训含解析文,共6页。
这是一份2022高考数学一轮总复习第二章函数概念与基本初等函数第10讲函数与方程集训含解析文,共5页。