七年级上册 05绝对值(提高)巩固练习
展开
这是一份七年级上册 05绝对值(提高)巩固练习,共4页。
整式的加减(二)—去括号与添括号(基础)责编:杜少波【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用;2. 会用整式的加减运算法则,熟练进行整式的化简及求值.【要点梳理】 要点一、去括号法则 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘. (2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号. (3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形. 要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释: (1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的. (2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:, 要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来. (3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数. 【典型例题】类型一、去括号 1.去括号:(1)d-2(3a-2b+3c);(2)-(-xy-1)+(-x+y).【答案与解析】(1)d-2(3a-2b+3c)=d-(6a-4b+6c)=d-6a+4b-6c; (2)-(-xy-1)+(-x+y)=xy+1-x+y.【总结升华】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号.举一反三【变式1】去掉下列各式中的括号: (1). 8m-(3n+5); (2). n-4(3-2m);(3). 2(a-2b)-3(2m-n).【答案】(1). 8m-(3n+5)=8m-3n-5. (2). n-4(3-2m)=n-(12-8m)=n-12+8m.(3). 2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.【变式2】(2015•济宁)化简﹣16(x﹣0.5)的结果是( ) A. ﹣16x﹣0.5 B. ﹣16x+0.5 C. 16x﹣8 D. ﹣16x+8【答案】D类型二、添括号2.在各式的括号中填上适当的项,使等式成立.(1). ;(2). .【答案】(1),,,.(2),,,.【解析】(1) ;(2).【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号. 举一反三【变式】.【答案】;;;.类型三、整式的加减3.(2016•邢台二模)设A,B,C均为多项式,小方同学在计算“A﹣B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x﹣1,C=x2+2x,那么A﹣B=( )A.x2﹣2x B.x2+2x C.﹣2 D.﹣2x【思路点拨】根据题意得到B=C﹣A,代入A﹣B中,去括号合并即可得到结果.【答案】C.【解析】解:根据题意得:A﹣B=A﹣(C﹣A)=A﹣C+A=2A﹣C=2(x2+x﹣1)﹣(x2+2x)=x2+2x﹣2﹣x2﹣2x=﹣2,故选C.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项. 类型四、化简求值4. 先化简,再求各式的值:【答案与解析】原式=,当时,原式=.【总结升华】化简求值题一般采用“一化二代三计算”,此类题的书写格式一般为:当……时,原式=?举一反三【变式1】先化简再求值:(-x2+5x+4)+(5x-4+2x2),其中x=-2.【答案】 (-x2+5x+4)+(5x-4+2x2)=-x2+5x+4+5x-4+2x2=x2+10x.当x=-2,原式=(-2)2+10×(-2)=-16.【变式2】先化简,再求值:,其中化为相反数.【答案】因为互为相反数,所以所以5. 已知,,求整式的值.【答案与解析】由,很难求出,的值,可以先把整式化简,然后把,分别作为一个整体代入求出整式的值.原式.把,代入得,原式.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便.举一反三【变式】已知代数式的值为8,求的值.【答案】∵ ,∴ . 当时,原式=.6. 如果关于x的多项式的值与x无关.你知道a应该取什么值吗?试试看.【答案与解析】所谓多项式的值与字母x无关,就是合并同类项,结果不含有“x”的项,所以合并同类项后,让含x的项的系数为0即可.注意这里的a是一个确定的数. (8x2+6ax+14)-(8x2+6x+5) =8x2+6ax+14-8x2-6x-5 =6ax-6x+9 =(6a-6)x+9 由于多项式(8x2+6ax+14)-(8x2+6x+5)的值与x无关,可知x的系数6a-6=0. 解得a=1.【总结升华】本例解题的题眼是多项式的值与字母x无关.“无关”意味着合并同类项后,其结果不含“x”的项.
相关试卷
这是一份初中数学华师大版七年级上册2.4 绝对值习题,共3页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学人教版七年级上册1.2.4 绝对值一课一练,共6页。
这是一份初中数学北师大版七年级上册2.3 绝对值同步练习题,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。