所属成套资源:2022年高考数学一轮复习知识训练合集(含答案解析卷)
2022高考数学一轮复习专题31 运用构造法研究函数的性质(原卷)
展开
这是一份2022高考数学一轮复习专题31 运用构造法研究函数的性质(原卷),共3页。试卷主要包含了题型选讲,构造函数研究函数的零点等问题,构造函数证明不等式等内容,欢迎下载使用。
专题31 运用构造法研究函数的性质一、题型选讲题型一 、构造函数研究函数的单调性例1、【2020年高考全国I卷理数】若,则A. B. C. D.变式1、(2020届山东师范大学附中高三月考)已知偶函数的定义域为,其导函数为,当时,有成立,则关于x的不等式的解集为( )A. B.C. D.变式2、(2020届山东实验中学高三上期中)已知定义在上的函数满足,且当时,有,则不等式的解集是( )A. B.C. D.题型二、构造函数研究函数的零点等问题例2、【2020年高考天津】已知函数若函数恰有4个零点,则的取值范围是A. B.C. D. 变式1、(2020届山东省潍坊市高三上学期统考)函数若函数只有一个零点,则可能取的值有( )A.2 B. C.0 D.1变式2、【2018年高考全国Ⅰ卷理数】已知函数.若g(x)存在2个零点,则a的取值范围是A.[–1,0) B.[0,+∞) C.[–1,+∞) D.[1,+∞) 题型三、构造函数证明不等式例3、(2019南通、泰州、扬州一调)已知函数f(x)=+lnx(a∈R). 设f(x)的导函数为f′(x),若f(x)有两个不相同的零点x1,x2.证明:x1f′(x1)+x2f′(x2)>2lna+2. 例5、(2017苏州期末)已知函数f(x)=(lnx-k-1)x(k∈R). 若x1≠x2,且f(x1)=f(x2),证明:x1x2<e2k. 二、达标训练1、【2020年高考全国Ⅱ卷理数】若2x−2y<3−x−3−y,则A.ln(y−x+1)>0 B.ln(y−x+1)<0 C.ln|x−y|>0 D.ln|x−y|<02、【2020年高考浙江】已知a,bR且ab≠0,对于任意x≥0均有(x–a)(x–b)(x–2a–b)≥0,则A.a<0 B.a>0 C.b<0 D.b>03、(2020·全国高三专题练习(文))函数,若方程有且只有两个不相等的实数根,则实数的取值范围是 ( )A. B. C. D.4、(2020届山东实验中学高三上期中)设定义在上的函数满足,且当时,.己知存在,且为函数(为自然对数的底数)的一个零点,则实数的取值可能是( )A. B. C. D.5、(2020届山东省滨州市高三上期末)已知定义在上的函数的导函数为,且,,则下列判断中正确的是( )A. B.C. D.6、(2020·浙江学军中学高三3月月考)已知函数,若函数有9个零点,则实数k的取值范围是( )A. B.C. D.
相关试卷
这是一份专题14 构造函数法解决导数问题(原卷及解析版),文件包含专题14构造函数法解决导数问题原卷版docx、专题14构造函数法解决导数问题解析版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
这是一份2024年高考数学二轮专题复习 数学构造法在不等式、函数性质、导数、抽象函数、巧求参数等方面应用(原卷版+解析版),共21页。
这是一份2022高考数学一轮复习专题31 运用构造法研究函数的性质(解析卷),共10页。试卷主要包含了题型选讲,构造函数研究函数的零点等问题,构造函数证明不等式等内容,欢迎下载使用。