![2021-2022学年冀教版八年级数学下册第二十二章四边形专项练习试题(含详解)第1页](http://m.enxinlong.com/img-preview/2/3/12735334/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第二十二章四边形专项练习试题(含详解)第2页](http://m.enxinlong.com/img-preview/2/3/12735334/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第二十二章四边形专项练习试题(含详解)第3页](http://m.enxinlong.com/img-preview/2/3/12735334/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学第二十二章 四边形综合与测试精品练习
展开这是一份数学第二十二章 四边形综合与测试精品练习,共24页。
八年级数学下册第二十二章四边形专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在中,若,则的度数是( )
A. B. C. D.
2、下列命题不正确的是( )
A.三边对应相等的两三角形全等
B.若,则
C.有一组对边平行、另一组对边相等的四边形是平行四边形
D.的三边为a、b、c,若,则是直角三角形.
3、一个多边形的每个内角均为150°,则这个多边形是( )
A.九边形 B.十边形 C.十一边形 D.十二边形
4、如图,正方形ABCD的对角线相交于点O,以点O为顶点的正方形OEGF的两边OE,OF分别交正方形ABCD的两边AB,BC于点M,N,记的面积为,的面积为,若正方形的边长,,则的大小为( )
A.6 B.7 C.8 D.9
5、下列命题中是真命题的是( ).A.有一组邻边相等的平行四边形是菱形 B.对角线互相垂直且相等的四边形是菱形
C.对角线相等的四边形是矩形 D.有一个角为直角的四边形是矩形
6、下列命题中,是真命题的是( ).A.三角形的外心是三角形三个内角角平分线的交点
B.满足的三个数,,是勾股数
C.对角线相等的四边形各边中点连线所得四边形是矩形
D.五边形的内角和为
7、如图,四边形ABCD是平行四边形,对角线AC与BD交于点O,若,,则的度数为( )
A.157° B.147° C.137° D.127°
8、如图,DE是的中位线,若,则BC的长为( )
A.8 B.7 C.6 D.7.5
9、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是( )
A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD
10、六边形对角线的条数共有( )
A.9 B.18 C.27 D.54
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、平行四边形的对角线________.
几何语言:∵四边形ABCD是平行四边形,
∴AO=________,BO=________(平行四边形的对角线互相平分).
2、如图,AC是正五边形ABCDE的对角线,则为______度.
3、如图,在平面直角坐标系xOy中,菱形ABCD的顶点A,D分别在y轴的正半轴和负半轴上,顶点B在x轴的负半轴上,若OA=3OD,S菱形ABCD=16,则点C的坐标为______.
4、如图,正方形的对角线、相交于点O,等边绕点O旋转,在旋转过程中,当时,的度数为____________.
5、如图所示,是长方形地面,长,宽,中间竖有一堵砖墙高.一只蚂蚱从点爬到点,它必须翻过中间那堵墙,则它至少要走______的路程.
三、解答题(5小题,每小题10分,共计50分)
1、尺规作图并回答问题:(保留作图痕迹)
已知:如图,四边形ABCD是平行四边形.
求作:菱形AECF,使点E,F分别在BC,AD上.
请回答:在你的作法中,判定四边形AECF是菱形的依据是 .
2、已知正方形与正方形,,.
(1)如图1,若点和点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).
(2)如图2,若点与点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).
(3)如图3,若将正方形沿正方形的边所在直线平移,使得点、在线段上(点不与点重合、点不与点重合),连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).
(4)如图4,若将正方形沿正方形的边所在直线平移,使得点、在的延长线上,连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).
3、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)计算AC2+BC2的值等于_____;
(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.
4、如图,已知平行四边形ABCD.
(1)用尺规完成以下基本作图:在CB上截取CE,使CE=CD,连接DE,作∠ABC的平分线BF交AD于点F.(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,证明四边形BEDF为平行四边形.
5、数学学习小组在学习了三角形中位线定理后,对四边形中有关中点的问题进行了探究:如图,在四边形中,E,F分别是边的中点.
(1)若,,,,求的长.小兰说:取的中点P,连接,.利用三角形中位线定理就能解答此题,请你根据小兰提供的思路解答此题;
(2)小花说:根据小兰的解题思路得到启发,如果满足,就能得到、、的数量关系,你觉得小花说得对吗?若对,请你帮小花得到、、的数量关系,并说明理由.
-参考答案-
一、单选题
1、B
【解析】
【分析】
利用平行四边形的对角相等即可选择正确的选项.
【详解】
解:四边形是平行四边形,
,
,
,
故选:B.
【点睛】
本题考查了平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考基础题.
2、C
【解析】
【分析】
根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.
【详解】
解:A、三边对应相等的两三角形全等,此命题正确,不符题意;
B、若,则,此命题正确,不符题意;
C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;
D、的三边为、、,若,即,则是直角三角形,此命题正确,不符题意;
故选:C.
【点睛】
本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.
3、D
【解析】
【分析】
先求出多边形的外角度数,然后即可求出边数.
【详解】
解:∵多边形的每个内角都等于150°,
∴多边形的每个外角都等于180°-150°=30°,
∴边数n=360°÷30°=12,
故选:D.
【点睛】
本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.
4、D
【解析】
【分析】
由题意依据全等三角形的判定得出△BOM≌△CON,进而根据正方形的性质即可得出的大小.
【详解】
解:∵正方形ABCD的对角线AC,BD交于点O,
∴OC=OD=BO=AO,∠ABO=∠ACB=45°,AC⊥BD.
∵∠MOB+∠BON=90°,∠BON+∠CON=90°
∴∠BOM=∠CON,且OC=OB,∠ABO=∠ACB=45°,
∴△BOM≌△CON(ASA),=S△BOM,
∴,
∵=S正方形ABCD,正方形的边长,,
∴=S正方形ABCD -=.
故选:D.
【点睛】
本题考查正方形的性质以及全等三角形的判定和性质等知识,灵活运用这些性质进行推理是解答本题的关键.
5、A
【解析】
【分析】
根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.
【详解】
解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;
B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;
C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;
D、有三个角是直角的四边形是矩形,所以该选项不正确.
故选:A.
【点睛】
本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.
6、D
【解析】
【分析】
正确的命题是真命题,根据定义解答.
【详解】
解:A. 三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;
B. 满足的三个正整数,,是勾股数,故该项不符合题意;
C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;
D. 五边形的内角和为,故该项符合题意;
故选:D.
【点睛】
此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.
7、C
【解析】
【分析】
根据平行四边形的性质推出AO=AB,求出∠AOB的度数,即可得到的度数.
【详解】
解:∵四边形ABCD是平行四边形,
∴AC=2AO,
∵,
∴AO=AB,
∵,
∴,
∴=,
故选:C.
【点睛】
此题考查了平行四边形的性质,三角形的内角和,利用邻补角求角度,正确掌握平行四边形的性质是解题的关键.
8、A
【解析】
【分析】
已知DE是的中位线,,根据中位线定理即可求得BC的长.
【详解】
是的中位线,,
,
故选:A.
【点睛】
此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.
9、D
【解析】
【分析】
根据平行四边形的性质解答.
【详解】
解:∵四边形ABCD是平行四边形,
∴AO=OC,故A正确;
∴,故B正确;
∴AD=BC,故C正确;
故选:D.
【点睛】
此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.
10、A
【解析】
【分析】
n边形对角线的总条数为:(n≥3,且n为整数),由此可得出答案.
【详解】
解:六边形的对角线的条数= =9.
故选:A.
【点睛】
本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:(n≥3,且n为整数).
二、填空题
1、 互相平分 CO DO
【解析】
略
2、72
【解析】
【分析】
先根据正五边形的内角和求出它的每个内角的度数,再根据等腰三角形的性质可得的度数,然后根据角的和差即可得.
【详解】
解:五边形是正五边形,
,
,
,
故答案为:72.
【点睛】
本题考查了正多边形的性质、等腰三角形的性质等知识点,熟练掌握正多边形的性质是解题关键.
3、(-2,-8)
【解析】
【分析】
由菱形的性质可得出,即,,再根据勾股定理可求出OB的长度.设,则,列等式,求出,则答案可解.
【详解】
,
四边形ABCD为菱形,
,,
即,,
,
.
设 则,
,即,
,
解得(舍去)
.
在轴上,,即轴,则轴,
.
【点睛】
本题考查了菱形的性质及勾股定理,根据菱形的性质结合勾股定理求出、、的长是解题的关键.
4、或
【解析】
【分析】
分两种情况:①根据正方形与等边三角形的性质得OC=OD,∠COD=90°,OE=OF,∠EOF=60°,可判断△ODE≌△OCF,则∠DOE=∠COF,于是可求∠DOF,即可得出答案;②同理可证得△ODE≌△OCF,所以∠DOE=∠COF,于是可求∠BOF,即可得答案.
【详解】
解:情况1,如下图:
∵四边形ABCD是正方形,
∴OD=OC,∠AOD=∠COD=90°,
∵△OEF是等边三角形,
∴OE=OF,∠EOF=60°,
在△ODE和△OCF中,
∴△ODE≌△OCF(SSS),
∴∠DOE=∠COF,
∴∠DOF=∠COE,
∴∠DOF=(∠COD-∠EOF)=×(90°﹣60°)=15°,
∴∠AOF=∠AOD+∠DOF=90°+15°=105°;
情况2,如下图:连接DE、CF,
∵四边形ABCD为正方形,
∴OC=OD,∠AOD=∠COB=90°,
∵△OEF为等边三角形,
∴OE=OF,∠EOF=60°,
在△ODE和△OCF中,
∴△ODE≌△OCF(SSS),
∴∠DOE=∠COF,
∴∠DOE=∠COF=(360°-∠COD-∠EOF)=×(360°﹣90°﹣60°)=105°,
∴∠BOF=∠COF-∠COB=105°-90°=15°,
∴∠AOF=∠AOB-∠BOF=90°-15°=75°,
故答案为:105°或75°.
【点睛】
本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形与等边三角形的性质,全等三角形的判定与性质,做题的关键是注意两种情况和证三角形全等.
5、
【解析】
【分析】
根据题意,将长方形底面和中间墙展开为平面图,并连接BD,根据两点之间直线段最短和勾股定理的性质计算,即可得到答案.
【详解】
将长方形底面和中间墙展开后的平面图如下,并连接BD
根据题意,展开平面图中的
∴一只蚂蚱从点爬到点,最短路径长度为展开平面图中BD长度
∵是长方形地面
∴
∴
故答案为:.
【点睛】
本题考查了立体图形展开图、矩形、两点之间直线段最短、勾股定理的知识;解题的关键是熟练掌握立体图形展开图、勾股定理的知识,从而完成求解.
三、解答题
1、证明见解析;邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.
【解析】
【分析】
根据邻边相等的平行四边形是菱形或对角线垂直的平行四边形是菱形证明即可.
【详解】
解:如图,四边形AECF即为所求作.
理由:四边形ABCD是平行四边形,
∴AE∥CF,
∴∠EAO=∠FCO,
∵EF垂直平分线段AC,
∴OA=OC,
在△AEO和△CFO中,
,
∴△AEO≌△CFO(ASA),
∴AE=CF,
∴四边形AECF是平行四边形,
∵EA=EC或AC⊥EF,
∴四边形AECF是菱形.
故答案为:邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.
【点睛】
本题考查作图-复杂作图,平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
2、 (1)
(2)
(3)
(4)
3、 11 见解析
【解析】
【分析】
(1)直接利用勾股定理求出即可;
(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.
【详解】
解:(1)AC2+BC2=()2+32=11;
故答案为:11;
(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;
延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求,如图,
【点睛】
本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.
4、 (1)见解析
(2)见解析
【解析】
【分析】
(1)延长CB到E使CE=CD,然后作∠ABC的平分线交AD的延长线于F;
(2)先根据平行四边形的性质得到AD=BC,AB=CD,ADBC,则CE=AB,再证明∠ABF=∠F得到AB=AF,然后证明BE=DF,从而可判断四边形BEDF为平行四边形.
(1)
如图,DE、BF为所作;
(2)
证明:∵四边形ABCD为平行四边形,
∴AD=BC,AB=CD,AD∥BC,
∵CE=CD,
∴CE=AB,
∵BF平分∠ABC,
∴∠ABF=∠CBF,
∵AFBC,
∴∠CBF=∠F,
∴∠ABF=∠F,
∴AB=AF,
∴CE=AF,即CB+BE=AD+DF,
∴BE=DF,
∵BEDF,
∴四边形BEDF为平行四边形.
【点睛】
本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键.
5、 (1)
(2),理由见解析
【解析】
【分析】
(1)根据题意作出辅助线,根据中位线的性质求得,根据平行线的性质求得,进而勾股定理即可求得;
(2)方法同(1).
(1)
解:如图,取的中点P,连接,,
P,E,F分别是边的中点, ,,
,,
,,
,,
,
在中,,
(2)
,理由如下,
如图,取的中点P,连接,,
P,E,F分别是边的中点,,
,,
,
,,
,
在中,,
即
【点睛】
本题考查了三角形中位线定理,勾股定理,平行线的性质,掌握中位线定理是解题的关键.
相关试卷
这是一份初中冀教版第二十二章 四边形综合与测试优秀随堂练习题,共31页。试卷主要包含了下列命题不正确的是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品同步训练题,共28页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。
这是一份2021学年第二十二章 四边形综合与测试精品达标测试,共24页。试卷主要包含了下列命题错误的是等内容,欢迎下载使用。