终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年冀教版八年级数学下册第二十二章四边形定向练习试题(含详解)

    立即下载
    加入资料篮
    2021-2022学年冀教版八年级数学下册第二十二章四边形定向练习试题(含详解)第1页
    2021-2022学年冀教版八年级数学下册第二十二章四边形定向练习试题(含详解)第2页
    2021-2022学年冀教版八年级数学下册第二十二章四边形定向练习试题(含详解)第3页
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后复习题

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后复习题,共27页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,△ABC的周长为a,以它的各边的中点为顶点作△A1B1C1,再以△AB1C1各边的中点为顶点作△A2B2C2,再以△AB2C2各边的中点为顶点作△A3B3C3,…如此下去,则△AnBnCn的周长为( )
    A.aB.aC.aD.a
    2、如图,平面直角坐标系xOy中,点A是直线上一动点,将点A向右平移1个单位得到点B,点C(1,0),则OB+CB的最小值为( )
    A.B.C.D.
    3、如图,矩形中,,如果将该矩形沿对角线折叠,那么图中阴影部分的面积是22.5,则( )
    A.8B.10C.12D.14
    4、下列说法正确的是( )
    A.只有正多边形的外角和为360°
    B.任意两边对应相等的两个直角三角形全等
    C.等腰三角形有两条对称轴
    D.如果两个三角形一模一样,那么它们形成了轴对称图形
    5、能够判断一个四边形是矩形的条件是( )
    A.对角线相等B.对角线垂直
    C.对角线互相平分且相等D.对角线垂直且相等
    6、将一长方形纸条按如图所示折叠,,则( )
    A.55°B.70°C.110°D.60°
    7、如图,把一长方形纸片ABCD的一角沿AE折叠,点D的对应点落在∠BAC内部.若,且,则∠DAE的度数为( )
    A.12°B.24°C.39°D.45°
    8、如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=150°;④S四边形AEFD=8.错误的个数是( )
    A.1个B.2个C.3个D.4个
    9、如图,在平面直角坐标系中,直线分别交x轴,y轴于A、B两点,C为线段OB上一点,过点C作轴交l于点D,若的顶点E恰好落在直线上,则点C的坐标为( )
    A.B.C.D.
    10、如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )
    A.1B.C.D.2
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在▱ABCD中,AC是对角线,∠ACD=90°,点E是BC的中点,AF平分∠BAC,CF⊥AF于点F,连接EF.已知AB=5,BC=13,则EF的长为__.
    2、如图,点E是矩形ABCD边AD上一点,点F,G,H分别是BE,BC,CE的中点,AF=6,则GH的长为_________.
    3、三角形的中位线______于三角形的第三边,并且等于第三边的______.
    数学表达式:如图,
    ∵AD=BD,AE=EC,
    ∴DE∥BC,且DE=BC.
    4、如图,在平行四边形ABCD中,AC⊥BC,E为AB中点,若CE=3,则CD=____.
    5、如图,矩形的两条对角线相交于点,已知,,则矩形对角线的长为_______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,已知正方形ABCD,点E在边BC上,连接AE.
    (1)尺规作图:作,使,点F是的边与线段AB的交点.(不写作法,保留作图痕迹);
    (2)探究:AE,DF的位置关系和数量关系,并说明理由.
    2、如图,在中,于点E,延长BC至点F,使,连接AF,DE,DF.
    (1)求证:四边形AEFD为矩形;
    (2)若,,,求DF的长.
    3、已知:如图,在▱ABCD中,AE⊥BC,,点E,F分别为垂足.
    (1)求证:△ABE≌△CDF;
    (2)求证:四边形AECF是矩形.
    4、如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.
    5、已知:线段m.
    求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.
    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    根据三角形中位线的性质可知的周长的周长,的周长的周长,以此类推找出规律,写出代数式,再整理即可选择.
    【详解】
    解:∵以△ABC的各边的中点为顶点作,
    ∴的周长的周长.
    ∵以各边的中点为顶点作,
    ∴的周长的周长,
    …,
    ∴的周长
    故选:A.
    【点睛】
    本题主要考查三角形中位线的性质,根据三角形中位线的性质求出前2个三角形的面积总结出规律是解答本题的关键.
    2、A
    【解析】
    【分析】
    设D(﹣1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,,作ES⊥x轴于S,根据题意OE就是OB+CB的最小值,由直线的解析式求得F的坐标,进而求得ED的长,从而求得OS和ES,然后根据勾股定理即可求得OE.
    【详解】
    解:设D(﹣1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,,交于点,作ES⊥x轴于S,
    ∵AB∥DC,且AB=OD=OC=1,
    ∴四边形ABOD和四边形ABCO是平行四边形,
    ∴AD=OB,OA=BC,
    ∴AD+OA=OB+BC,
    ∵AE=AD,
    ∴AE+OA=OB+BC,
    即OE=OB+BC,
    ∴OB+CB的最小值为OE,
    由,
    当时,,
    解得:,


    当时,,



    取的中点,过作轴的垂线交于,

    当时,,



    为的中点,

    为等边三角形,




    ∴FD=3,∠FDG=60°,
    ∴DG=DF=,
    ∴DE=2DG=3,
    ∴ES=DE=,DS=DE=,
    ∴OS=,
    ∴OE==,
    ∴OB+CB的最小值为,
    故选:A.
    【点睛】
    本题考查了一次函数的性质,轴对称﹣最短路线问题以及平行四边形的性质、勾股定理的应用,解题的关键是证得OE是OB+CB的最小值.
    3、C
    【解析】
    【分析】
    根据折叠和矩形的性质,可得∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,从而得到∠BDE=∠DBE,进而得到BE=DE,再由的面积是22.5,可得,然后根据勾股定理,即可求解.
    【详解】
    解:根据题意得: ∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,
    ∴∠BDE=∠CBD,
    ∴∠BDE=∠DBE,
    ∴BE=DE,
    ∵的面积是22.5,,
    ∴ ,解得: ,
    ∴,
    在 中,由勾股定理得:

    ∴ .
    故选:C
    【点睛】
    本题主要考查了折叠和矩形的性质,勾股定理,熟练掌握折叠和矩形的性质,勾股定理是解题的关键.
    4、B
    【解析】
    【分析】
    选项A根据多边形的外角和定义判断即可;选项B根据三角形全等的判定方法判断即可;选项C根据轴对称图形的定义判断即可;选项D根据轴对称的性质判断即可.
    【详解】
    解:A.所有多边形的外角和为,故本选项不合题意;
    B.任意两边对应相等的两个直角三角形全等,说法正确,故本项符合题意;
    C.等腰三角形有1条对称轴,故本选项不合题意;
    D.如果两个三角形一模一样,那么它们不一定形成轴对称图形,故本选项不合题意;
    故选:B.
    【点睛】
    此题主要考查了多边形的外角和,轴对称的性质,等腰三角形的性质,全等三角形的判定,解题的关键是掌握轴对称图形的概念.
    5、C
    【解析】

    6、B
    【解析】
    【分析】
    从折叠图形的性质入手,结合平行线的性质求解.
    【详解】
    解:由折叠图形的性质结合平行线同位角相等可知,,


    故选:B.
    【点睛】
    本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.
    7、C
    【解析】
    【分析】
    由折叠的性质得到,由长方形的性质得到,根据角的和差倍分得到,整理得 ,最后根据解题.
    【详解】
    解:折叠,
    是矩形
    故选:C.
    【点睛】
    本题考查角的计算、折叠性质、数形结合思想等知识,是重要考点,掌握相关知识是解题关键.
    8、A
    【解析】
    【分析】
    利用勾股定理逆定理证得△ABC是直角三角形,由此判断①;证明△ABC≌△DBF得到DF=AE,同理可证:△ABC≌△EFC,得到EF=AD,由此判断②;由②可判断③;过A作AG⊥DF于G,求出AG即可求出 S▱AEFD,判断④.
    【详解】
    解:∵AB=3,AC=4,32+42=52,
    ∴AB2+AC2=BC2,
    ∴△ABC是直角三角形,∠BAC=90°,
    ∴AB⊥AC,故①正确;
    ∵△ABD,△ACE都是等边三角形,
    ∴∠DAB=∠EAC=60°,
    ∴∠DAE=150°,
    ∵△ABD和△FBC都是等边三角形,
    ∴BD=BA,BF=BC,
    ∴∠DBF=∠ABC,
    在△ABC与△DBF中,

    ∴△ABC≌△DBF(SAS),
    ∴AC=DF=AE=4,
    同理可证:△ABC≌△EFC(SAS),
    ∴AB=EF=AD=3,
    ∴四边形AEFD是平行四边形,故②正确;
    ∴∠DFE=∠DAE=150°,故③正确;
    过A作AG⊥DF于G,如图所示:
    则∠AGD=90°,
    ∵四边形AEFD是平行四边形,
    ∴∠FDA=180°﹣∠DFE=180°﹣150°=30°,
    ∴AG=AD=,
    ∴S▱AEFD=DF•AG=4×=6;故④错误;
    ∴错误的个数是1个,
    故选:A.

    【点睛】
    此题考查了等边三角形的性质,勾股定理的逆定理,全等三角形的判定及性质,平行四边形的判定及性质,直角三角形的30度角的性质,熟练掌握各知识点是解题的关键.
    9、D
    【解析】
    【分析】
    设点 ,根据轴,可得点 ,再根据平行四边形的性质可得点轴, ,则, ,即可求解.
    【详解】
    解:设点 ,
    ∵轴,
    ∴点 ,
    ∵四边形是平行四边形,
    ∴轴, ,
    ∴点 ,
    ∴ ,
    ∵直线分别交y轴于B两点,
    ∴当 时, ,
    ∴点 ,
    ∴ ,
    ∴,解得: ,
    ∴ ,
    ∴点 .
    故选:D
    【点睛】
    本题主要考查了一次函数的图形和性质,平行四边形的性质,熟练掌握一次函数的图形和性质,平行四边形的性质,利用数形结合思想解答是解题的关键.
    10、D
    【解析】
    【分析】
    由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB∥CD,∠A=90°,
    ∴∠EFD=∠BEF=60°,
    ∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,
    ∴∠BEF=∠FEB'=60°,BE=B'E,
    ∴∠AEB'=180°-∠BEF-∠FEB'=60°,
    ∴B'E=2AE,
    设BE=x,则B'E=x,AE=3-x,
    ∴2(3-x)=x,
    解得x=2.
    故选:D.
    【点睛】
    本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.
    二、填空题
    1、##3.5
    【解析】
    【分析】
    延长AB、CF交于点H,由“ASA”可证,可得AC=AH=12,HF=CF,由三角形中位线定理可求解.
    【详解】
    解:如图,延长AB、CF交于点H,
    ∵四边形ABCD是平行四边形,
    ∴,
    ∴∠ACD=∠BAC=90°,
    ∴,
    ∵AF平分∠BAC,
    ∴∠BAF=∠CAF=45°,
    在和中,

    ∴,
    ∴AC=AH=12,HF=CF,
    ∴BH=AH﹣AB=7,
    ∵点E是BC的中点,HF=CF,
    ∴EF=BH=,
    故答案为:.
    【点睛】
    本题考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,三角形中位线的定理,添加恰当辅助线构造全等三角形是本题的关键.
    2、6
    【解析】
    【分析】
    由矩形的性质及直角三角形斜边上的中线的性质可求解BE=2AF=12,再利用三角形中位线定理可求解.
    【详解】
    解:在矩形ABCD中,∠BAD=90°,
    ∵F为BE的中点,AF=6,
    ∴BE=2AF=12.
    ∵G,H分别为BC,EC的中点,
    ∴GH=BE=6,
    故答案为6.
    【点睛】
    根据直角三角形斜边上的中线等于斜边的一半,求解BE的长是解题的关键.再根据中位线定理求出GH.
    3、 平行 一半
    【解析】

    4、6
    【解析】
    【分析】
    由AC⊥BC,E为AB中点,若CE=3,根据直角三角形斜边的中线等于斜边的一半,可求得AB的长,然后由平行四边形的性质,求得答案.
    【详解】
    解:∵AC⊥BC,E为AB中点,
    ∴AB=2CE=2×3=6,
    ∵四边形ABCD是平行四边形,
    ∴CD=AB=6.
    故答案为:6.
    【点睛】
    此题考查了平行四边形的性质以及直角三角形的性质.注意平行四边形的对边相等.
    5、5
    【解析】
    【分析】
    由矩形的性质可证△AOB为等边三角形,可求BO=AB的长,即可求BD的长.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AO=CO=BO=DO,
    ∵∠AOD=120°,
    ∴∠AOB=60°,且AO=BO,
    ∴△ABO为等边三角形,
    ∴AO=BO=AB=2.5,
    ∴BD=5,
    故答案为:5.
    【点睛】
    本题考查矩形的性质,熟练掌握矩形的性质是本题的关键,①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.
    三、解答题
    1、 (1)见解析;
    (2),,见解析
    【解析】
    【分析】
    (1)根据题意作出即可;
    (2)证明即可得结论.
    (1)
    如图,即为所求.
    (2)
    ,.
    ∵四边形ABCD是正方形,
    ∴,.
    在和中,
    ∴(AAS),
    ∴.
    ∵,.
    ∴,即.
    【点睛】
    本题考查了正方形的性质,三角形全等的性质与判定,作一个角等于已知角,掌握全等三角形的性质与判定是解题的关键.
    2、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)根据线段的和差关系可得BC=EF,根据平行四边形的性质可得AD∥BC,AD=BC,即可得出AD=EF,可证明四边形AEFD为平行四边形,根据AE⊥BC即可得结论;
    (2)根据矩形的性质可得AF=DE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.
    (1)
    ∵BE=CF,
    ∴BE+CE=CF+CE,即BC=EF,
    ∵ABCD是平行四边形,
    ∴AD∥BC,AD=BC,
    ∴AD=EF,
    ∵AD∥EF,
    ∴四边形AEFD为平行四边形,
    ∵AE⊥BC,
    ∴∠AEF=90°,
    ∴四边形AEFD为矩形.
    (2)
    ∵四边形AEFD为矩形,
    ∴AF=DE=4,DF=AE,
    ∵,,,
    ∴AB2+AF2=BF2,
    ∴△BAF为直角三角形,∠BAF=90°,
    ∴,
    ∴AE=,
    ∴.
    【点睛】
    本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.
    3、 (1)证明见解析
    (2)证明见解析
    【解析】
    【分析】
    (1)先根据平行四边形的性质可得,再根据垂直的定义可得,然后根据三角形全等的判定定理(定理)即可得证;
    (2)先根据平行四边形的性质可得,再根据平行线的性质可得,然后根据矩形的判定即可得证.
    (1)
    证明:四边形是平行四边形,



    在和中,,

    (2)
    证明:,

    四边形是平行四边形,


    在四边形中,,
    四边形是矩形.
    【点睛】
    本题考查了平行四边形的性质、三角形全等的判定定理、矩形的判定等知识点,熟练掌握各判定定理与性质是解题关键.
    4、150°
    【解析】
    【分析】
    先根据邻补角的定义求出∠ADC的度数,再根据四边形的内角和求出∠B的度数.
    【详解】
    解:∵∠ADE为四边形ABCD的一个外角,且∠ADE=125°,
    ∴∠ADC=180°-∠ADE=55°,
    ∵∠A+∠B+∠C+∠ADE=360°,
    ∴∠B=360°-∠A-∠C-∠ADE=360°-80°-75°-55°=150°.
    【点睛】
    此题考查了多边形外角定义,多边形的内角和,熟记多边形的内角和进行计算是解题的关键.
    5、见详解
    【解析】
    【分析】
    先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.
    【详解】
    解:先作m的垂直平分线,取m的一半为AB,
    以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,
    过A作BC的平行线,与过C作AB的平行线交于D,
    则四边形ABCD为所求作矩形;

    ∵AD∥BC,CD∥AB,
    ∴四边形ABCD为平行四边形,
    ∵BC⊥AB,
    ∴∠ABC=90°,
    ∴四边形ABCD为矩形,
    ∵AB=,AC=m,
    ∴矩形的宽与对角线满足条件,
    ∴四边形ABCD为所求作矩形.
    【点睛】
    本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.

    相关试卷

    初中冀教版第二十二章 四边形综合与测试精练:

    这是一份初中冀教版第二十二章 四边形综合与测试精练,共29页。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试同步训练题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试同步训练题,共28页。

    冀教版八年级下册第二十二章 四边形综合与测试优秀课堂检测:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀课堂检测,共37页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map