搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度冀教版九年级数学下册第二十九章直线与圆的位置关系单元测试试题(名师精选)

    2021-2022学年度冀教版九年级数学下册第二十九章直线与圆的位置关系单元测试试题(名师精选)第1页
    2021-2022学年度冀教版九年级数学下册第二十九章直线与圆的位置关系单元测试试题(名师精选)第2页
    2021-2022学年度冀教版九年级数学下册第二十九章直线与圆的位置关系单元测试试题(名师精选)第3页
    还剩28页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀单元测试当堂检测题

    展开

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀单元测试当堂检测题,共31页。试卷主要包含了如图所示,在的网格中,A等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系单元测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知⊙O的半径为4,,则点A在( )
    A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定
    2、的半径为5 , 若直线与该圆相交, 则圆心到直线的距离可能是 ( )
    A.3 B.5 C.6 D.10
    3、已知正三角形外接圆半径为,这个正三角形的边长是( )
    A. B. C. D.
    4、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )

    A. B. C. D.
    5、如图所示,在的网格中,A、B、D、O均在格点上,则点O是△ABD的( )

    A.外心 B.重心 C.中心 D.内心
    6、矩形ABCD中,AB=8,BC=4,点P在边AB上,且AP=3,如果⊙P是以点P为圆心,PD为半径的圆,那么下列判断正确的是(  )
    A.点B、C均在⊙P内 B.点B在⊙P上、点C在⊙P内
    C.点B、C均在⊙P外 D.点B在⊙P上、点C在⊙P外
    7、已知⊙O的半径等于8,点P在直线l上,圆心O到点P的距离为8,那么直线l与⊙O的位置关系是(  )
    A.相切 B.相交
    C.相离、相切或相离 D.相切或相交
    8、如图,在平面直角坐标系中,直线分别与轴、轴相交于点、,点、分别是正方形的边、上的动点,且,过原点作,垂足为,连接、,则面积的最大值为( )

    A. B.12 C. D.
    9、如图所示,⊙O的半径为5,点O到直线l的距离为7,P是直线l上的一个动点,PQ与⊙O相切于点Q.则PQ的最小值为( )

    A. B. C.2 D.2
    10、已知M(1,2),N(3,﹣3),P(x,y)三点可以确定一个圆,则以下P点坐标不满足要求的是( )
    A.(3,5) B.(﹣3,5) C.(1,2) D.(1,﹣2)
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知正多边形的半径与边长相等,那么正多边形的边数是______.
    2、已知⊙O的直径为6cm,且点P在⊙O上,则线段PO=_________ .
    3、如图,在矩形中,是边上的点,经过,,三点的与相切于点.若,,则的半径是__________.

    4、若⊙O的半径为3cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是:点A在⊙O_______.(填“上”、“内”、“外”)
    5、已知⊙O的半径为5cm,OP= 4cm,则点P与⊙O的位置关系是点P在_____.(填“圆内”、“圆外”或“圆上”)
    三、解答题(5小题,每小题10分,共计50分)
    1、【提出问题】如图①,已知直线l与⊙O相离,在⊙O上找一点M,使点M到直线l的距离最短.

    (1)小明给出下列解答,请你补全小明的解答.
    小明的解答
    过点O作ON⊥l,垂足为N,ON与⊙O的交点M即为所求,此时线段MN最短.
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴ .
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 ,
    ∴ .
    (2)【操作实践】如图②,已知直线l和直线外一点A,线段MN的长度为1.请用直尺和圆规作出满足条件的某一个⊙O,使⊙O经过点A,且⊙O上的点到直线l的距离的最小值为1.(不写作法,保留作图痕迹并用水笔加黑描粗)
    (3)【应用尝试】如图③,在Rt△ABC中,∠C=90,∠B=30,AB=8,⊙O经过点A,且⊙O上的点到直线BC的距离的最小值为2,距离最小值为2时所对应的⊙O上的点记为点P,若点P在△ABC的内部(不包括边界),则⊙O的半径r的取值范围是 .
    2、如图,AB是ΘO的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.

    (1)判断DE所在直线与ΘO的位置关系,并说明理由;
    (2)若AE=4,ED=2,求ΘO的半径.
    3、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CE于D,延长CO交O于B,连接AD、AB,AB是O的切线.

    (1)求证:AD是O的切线.
    (2)若O的半径为4,,求平行四边形OAEC的面积.
    4、如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).

    (1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,那么称点P为线段AB的“完美点”.
    ①设A、B、P三点所在圆的圆心为C,则点C的坐标是    ,⊙C的半径是    ;
    ②y轴正半轴上是否有线段AB的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;
    (2)若点P在y轴负半轴上运动,则当∠APB的度数最大时,点P的坐标为    .
    5、如图,已知是的直径,点在上,点在外.

    (1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)
    (2)综合运用,在你所作的图中.若,求证:是的切线.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.
    【详解】
    解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,
    ∴d>r,
    ∴点A在⊙O外,
    故选:C.
    【点睛】
    本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.
    2、A
    【解析】
    【分析】
    根据直线l和⊙O相交⇔d<r,即可判断.
    【详解】
    解:∵⊙O的半径为5,直线l与⊙O相交,
    ∴圆心D到直线l的距离d的取值范围是0≤d<5,
    故选:A.
    【点睛】
    本题考查直线与圆的位置关系,解题的关键是记住①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.
    3、B
    【解析】
    【分析】
    如图, 为正三角形ABC的外接圆,过点O作OD⊥AB于点D,连接OA, 再由等边三角形的性质,可得∠OAB=30°,,然后根据锐角三角函数,即可求解.
    【详解】
    解:如图, 为正三角形ABC的外接圆,过点O作OD⊥AB于点D,连接OA,

    根据题意得:OA= ,∠OAB=30°,,
    在中,

    ∴AB=3,即这个正三角形的边长是3.
    故选:B
    【点睛】
    本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键.
    4、A
    【解析】
    【分析】
    连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
    【详解】
    解:连结OC,
    ∵以边上一点为圆心作,恰与边,分别相切于点A, ,
    ∴DC=AC,OC平分∠ACD,
    ∵,,
    ∴∠ACD=90°-∠B=60°,
    ∴∠OCD=∠OCA==30°,
    在Rt△ABC中,AC=ABtanB=3×,
    在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
    ∴OD=OA=1,DC=AC=,
    ∴,,
    ∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
    ∴,
    S阴影=.
    故选择A.

    【点睛】
    本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
    5、A
    【解析】
    【分析】
    根据网格的特点,勾股定理求得,进而即可判断点O是△ABD的外心
    【详解】
    解:∵
    ∴O是△ABD的外心
    故选A
    【点睛】
    本题考查了三角形的外心的判定,勾股定理与网格,理解三角形的外心的定义是解题的关键.三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等.
    6、D
    【解析】
    【分析】
    如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案.
    【详解】
    解:如图所示,连接DP,CP,
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=90°,
    ∵AP=3,AB=8,
    ∴BP=AB-AP=5,
    ∵,
    ∴PB=PD,
    ∴,
    ∴点C在圆P外,点B在圆P上,
    故选D.

    【点睛】
    本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.
    7、D
    【解析】
    【分析】
    根据垂线段最短,则点O到直线l的距离≤5,则直线l与⊙O的位置关系是相切或相交.
    【详解】
    解:的半径为8,,
    点到直线的距离,
    直线与的位置关系是相切或相交.
    故选:D.
    【点睛】
    此题要特别注意OP不一定是点到直线的距离.判断点和直线的位置关系,必须比较点到直线的距离和圆的半径之间的大小关系.
    8、D
    【解析】
    【分析】
    先证明ON=CN,再证点H在以ON直径的圆上运动,则当点H在QM的延长线上时,点H到AB的距离最大,由相似三角形的性质可求MK,KQ的长,由三角形的面积公式可求解.
    【详解】
    解:如图,连接AD,交EF于N,连接OC,取ON的中点M,连接MH,过点M作MQ⊥AB于Q,交AO于点K,作MP⊥OA与点P,

    ∵直线分别与x轴、y轴相交于点A、B,
    ∴点A(4,0),点B(0,-3),
    ∴OB=3,OA=4,
    ∴,
    ∵四边形ACDO是正方形,
    ∴OD//AC,AO=AC=OD=4,OC=4,∠COA=45°,
    ∴∠EDN=∠NAF,∠DEN=∠AFN,
    又∵DE=AF,
    ∴△DEN≌△AFN(ASA),
    ∴DN=AN,EN=NF,
    ∴点N是AD的中点,即点N是OC的中点,
    ∴ON=NC=2,
    ∵OH⊥EF,
    ∴∠OHN=90°,
    ∴点H在以ON直径的圆上运动,
    ∴当点H在QM的延长线上时,点H到AB的距离最大,
    ∵点M是ON的中点,
    ∴OM=MN=,
    ∵MP⊥OP,∠COA=45°,
    ∴OP=MP=1,
    ∴AP=3,
    ∵∠OAB+∠OBA=90°=∠OAB+∠AKQ,
    ∴∠AKQ=∠ABO=∠MKP,
    又∵∠AOB=∠MPK=90°,
    ∴△MPK∽△AOB,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵∠AKQ=∠ABO,∠OAB=∠KAQ,
    ∴△AKQ∽△ABO,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴点H到AB的最大距离为,
    ∴△HAB面积的最大值,
    故选:D.
    【点睛】
    本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,一次函数的应用等知识,求出MQ的长是解题的关键.
    9、C
    【解析】
    【分析】
    由切线的性质可知OQ⊥PQ,在Rt△OPQ中,OQ=5,则可知当OP最小时,PQ有最小值,当OP⊥l时,OP最小,利用勾股定理可求得PQ的最小值.
    【详解】
    ∵PQ与⊙O相切于点Q,
    ∴OQ⊥PQ,
    ∴PQ2=OP2-OQ2=OP2-52=OP2-25,
    ∴当OP最小时,PQ有最小值,
    ∵点O到直线l的距离为7,
    ∴OP的最小值为7,
    ∴PQ的最小值=,
    故选:C.
    【点睛】
    本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键.
    10、C
    【解析】
    【分析】
    先利用待定系数法求出直线的解析式,再把每点代入函数解析式,根据不在同一直线上的三点能确定一个圆即可得出答案.
    【详解】
    解:设直线的解析式为,
    将点代入得:,解得,
    则直线的解析式为,
    A、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
    B、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
    C、当时,,则此时点在同一直线上,不可以确定一个圆,此项符合题意;
    D、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
    故选:C.
    【点睛】
    本题考查了确定一个圆、求一次函数的解析式,熟练掌握确定一个圆的条件是解题关键.
    二、填空题
    1、六
    【解析】
    【分析】
    设这个正多边形的边数为n,根据题意可知OA=OB=AB,则△OAB是等边三角形,得到∠AOB=60°,则,由此即可得到答案.
    【详解】
    解:设这个正多边形的边数为n,
    ∵正多边形的半径与边长相等,
    ∴OA=OB=AB,
    ∴△OAB是等边三角形,
    ∴∠AOB=60°,
    ∴,
    ∴,
    ∴正多边形的边数是六,
    故答案为:六.

    【点睛】
    本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键.
    2、3cm
    【解析】
    【分析】
    根据点与圆的位置关系得出:点P在⊙O上,则即可得出答案.
    【详解】
    ∵⊙O的直径为6cm,
    ∴⊙O的半径为3cm,
    ∵点P在⊙O上,
    ∴.
    故答案为:3cm.
    【点睛】
    本题考查点与圆的位置关系:点P在⊙O外,则,点P在⊙O上,则,点P在⊙O内,则.
    3、##
    【解析】
    【分析】
    连接EO,并延长交圆于点G,在Rt△DEF中求出EF的值,再证明△DEF∽△FGE,然后根据相似三角形的性质即可求解.
    【详解】
    解:连接EO,并延长交圆于点G,

    ∵四边形是矩形,
    ∴CD=,∠D=90°,
    ∵与相切于点,
    ∴OE⊥CD,再结合矩形的性质可得:
    ∴DE=CE=3.
    ∵,
    ∴EF=.
    ∵与相切于点,
    ∴∠GED=90°.
    ∵GE是直径,
    ∴∠GFE=90°,
    ∴∠DEF+∠GEF=90°,∠EGF+∠GEF=90°,
    ∴∠DEF=∠EGF.
    ∵∠D=∠∠GFE=90°,
    ∴△DEF∽△FGE,
    ∴,
    ∴,
    ∴GE=,
    ∴的半径是,
    故答案为;.
    【点睛】
    本题考查了矩形的性质,勾股定理,切线的性质,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.
    4、外
    【解析】
    【分析】
    点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.据此作答.
    【详解】
    解:∵⊙O的半径为3cm,点A到圆心O的距离OA为4cm,
    即点A到圆心的距离大于圆的半径,
    ∴点A在⊙O外.
    故答案为:外.
    【点睛】
    本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.
    5、圆内
    【解析】
    【分析】
    根据点与圆的位置关系进行解答即可得.
    【详解】
    解:∵点到圆心的距离d=4∠AMB,即∠APB>∠AMB,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,四边形OPEF是矩形,OP=EF,PE=OF=4,得,则,即可得.
    (1)
    ①如图1中,

    在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,
    圆心C的坐标为(4,3),半径为3,
    根据对称性可知点C(4,−3)也满足条件,
    故答案是:(4,3)或C(4,−3),,
    ②y轴的正半轴上存在线段AB的“等角点”。
    如图2所示,当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,

    ∵⊙C的半径,
    ∴⊙C与y轴相交,
    设交点为,,此时,在y轴的正半轴上,
    连接、、CA,则==CA =r=3,
    ∵CD⊥y轴,CD=4,,
    ∴,
    ∴,;
    当圆心为C(4,-3)时,点P在y轴的负半轴上,不符合题意;
    故答案为:,
    (2)
    当过点A,B的圆与y轴负半轴相切于点P时,∠APB最大,理由如下:
    如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,
    如图3所示,在y轴的负半轴上任取一点M(不与点P重合),
    连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,

    ∵点P,点N在⊙E上,
    ∴∠APB=∠ANB,
    ∵∠ANB是△MAN的外角,
    ∴∠ANB>∠AMB,
    即∠APB>∠AMB,
    此时,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,
    ∵⊙E与y轴相切于点P,则EP⊥y轴,
    ∴四边形OPEF是矩形,OP=EF,PE=OF=4,
    ∴⊙E的半径为4,即EA=4,
    ∴在Rt△AEF中,,
    ∴,
    即 .
    故答案为:
    【点睛】
    本题考查了圆与三角形,勾股定理,三角形的外角,矩形的性质,解题的关键是掌握这些知识点.
    5、 (1)作图见解析
    (2)证明见解析
    【解析】
    【分析】
    (1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.
    (2)连接AD , ,,,,AB为直径,进而可得AE是的切线.
    (1)
    解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.

    (2)
    解:连接AD,如图

    ∵为直径




    又∵AB为直径
    ∴AE是的切线.
    【点睛】
    本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.

    相关试卷

    2020-2021学年第29章 直线与圆的位置关系综合与测试优秀达标测试:

    这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试优秀达标测试,共41页。试卷主要包含了如图,将的圆周分成五等分,下列说法正确的是等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀精练:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀精练,共32页。试卷主要包含了已知M,如图所示,在的网格中,A等内容,欢迎下载使用。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步训练题:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步训练题,共31页。试卷主要包含了下面四个结论正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map