冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步训练题
展开
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步训练题,共31页。试卷主要包含了下面四个结论正确的是等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,若的半径为R,则它的外切正六边形的边长为( )
A. B. C. D.
2、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
A.OP>4 B.0≤OP2 D.0≤OP4,
故选:A.
【点睛】
此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
3、B
【解析】
【分析】
由已知点(2,3)可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d为直线与圆的距离,r为圆的半径,则有若dr,则直线与圆相离.
【详解】
解:∵点(2,3)到x轴的距离是3,等于半径,
到y轴的距离是2,小于半径,
∴圆与y轴相交,与x轴相切.
故选B.
【点睛】
本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.
4、D
【解析】
【分析】
如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案.
【详解】
解:如图所示,连接DP,CP,
∵四边形ABCD是矩形,
∴∠A=∠B=90°,
∵AP=3,AB=8,
∴BP=AB-AP=5,
∵,
∴PB=PD,
∴,
∴点C在圆P外,点B在圆P上,
故选D.
【点睛】
本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.
5、C
【解析】
【分析】
连接CO利用切线的性质定理得出∠OCD=90°,进而求出∠DOC=40°即可得出答案.
【详解】
解:连接OC,
∵DC切⊙O于点C,
∴∠OCD=90°,
∵∠A=20°,
∴∠OCA=20°,
∴∠DOC=40°,
∴∠D=90°-40°=50°.
故选:C.
【点睛】
本题主要考查了切线的性质以及三角形外角性质等知识,根据已知得出∠OCD=90°是解题关键.
6、D
【解析】
【分析】
过点O作OH⊥BC于点H,根据等边三角形的性质即可求出OH和BH的长,再根据垂径定理求出BC的长,最后运用三角形面积公式求解即可.
【详解】
解:过点O作OH⊥BC于点H,连接AO,BO,
∵△ABC是等边三角形,
∴∠ABC=60°,
∵O为三角形外心,
∴∠OAH=30°,
∴OH=OB=1,
∴BH=,AH=-AO+OH=2+1=3
∴
∴
故选:D
【点睛】
本题考查了等边三角形的性质、含30°角的直角三角形的性质,熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.
7、D
【解析】
【分析】
根据圆的有关概念、确定圆的条件、圆周角定理及三角形的外心的性质解得即可.
【详解】
解:A、在同圆或等圆中,能完全重合的弧才是等弧,故错误;
B、不在同一直线上的三点确定一个圆,故错误;
C、在同圆或等圆中,同弧或等弧所对的圆心角是圆周角的2倍,故错误;
D、三角形的外心到三角形的三个顶点的距离相等,故正确;
故选D.
【点睛】
本题考查了圆的有关的概念,属于基础知识,必须掌握.
8、B
【解析】
【分析】
连接EO,延长EO交CD于F,连接DO,设半径为x.构建方程即可解决问题.
【详解】
解:设⊙O与AB相切于点E.连接EO,延长EO交CD于F,连接DO,
再设⊙O的半径为x.
∵AB切⊙O于E,
∴EF⊥AB,
∵AB∥CD,
∴EF⊥CD,
∴∠OFD=90°,
在Rt△DOF中,∵∠OFD=90°,OF2+DF2=OD2,
∴(8-x)2+42= x2,
∴x=5,
∴⊙O的半径为5.
故选:B.
【点睛】
本题考查了切线的性质、正方形的性质、垂径定理、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.
9、B
【解析】
【分析】
如图1,⊙O是正六边形的外接圆,连接OA,OB,求出∠AOB=60°,即可证明△OAB是等边三角形,得到OA=AB=6;如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,先求出∠AO1B=60°,然后根据等边三角形的性质和勾股定理求解即可.
【详解】
解:(1)如图1,⊙O是正六边形的外接圆,连接OA,OB,
∵六边形ABCDEF是正六边形,
∴∠AOB=360°÷6=60°,
∵OA=OB,
∴△OAB是等边三角形,
∴OA=AB=6;
(2)如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,
∵六边形ABCDEF是正六边形,
∴∠AO1B=60°,
∵O1A= O1B,
∴△O1AB是等边三角形,
∴O1A= AB=6,
∵O1M⊥AB,
∴∠O1MA=90°,AM=BM,
∵AB=6,
∴AM=BM,
∴O1M.
故选B.
【点睛】
本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键.
10、B
【解析】
【分析】
根据点与圆的位置关系的判定方法进行判断.
【详解】
解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,
即点A到圆心O的距离小于圆的半径,
∴点A在⊙O内.
故选:B.
【点睛】
本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
二、填空题
1、##
【解析】
【分析】
在Rt△ABC中,利用正弦函数求得AB的长,再在Rt△AOD中,利用正弦函数得到关于r的方程,求解即可.
【详解】
解:在Rt△ABC中,BC=4,sinA=,
∴=,即=,
∴AB=5,
连接OD,
∵AC是⊙O的切线,
∴OD⊥AC,
设⊙O的半径为r,则OD= OB=r,
∴AO=5- r,
在Rt△AOD中,sinA=,
∴=,即=,
∴r=.
经检验r=是方程的解,
∴⊙O的半径长为.
故答案为:.
【点睛】
本题考查了切线的性质,正弦函数,解题的关键是掌握切线的性质、解直角三角形等知识点.
2、相切或相交
【解析】
【分析】
本题需分类讨论,当直线上的点到圆心的连线垂直于直线AB时,直线于圆的位置关系为相切,当直线上的点到圆心的连线与直线AB不垂直时,直线到圆心的距离小于圆的半径,直线与圆相交.
【详解】
设直线AB上与圆心距离为4cm的点为C,
当OC⊥AB时,OC=⊙O的半径,
所以直线AB与⊙O相切,
当OC与AB不垂直时,圆心O到直线AB的距离小于OC,
所以圆心O到直线AB的距离小于⊙O的半径,
所以直线AB与⊙O相交,
综上所述直线AB与⊙O的位置关系为相切或相交,
故答案为:相切或相交.
【点睛】
本题考查直线与圆的位置关系,本题需根据圆心与直线上一点的距离,分类讨论圆与直线的位置关系,利用分类讨论思想是解决本题的关键.
3、45°##45度
【解析】
【分析】
连接OB、OC,根据正方形的性质得到∠BOC的度数,利用圆周角与圆心角的关系得到答案.
【详解】
解:连接OB、OC,
∵四边形ABCD是正方形,
∴∠BOC=90°,
∴∠BPC=,
故答案为:45°.
【点睛】
此题考查了圆内接正方形的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半,熟记各知识点是解题的关键.
4、
【解析】
【分析】
先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.
【详解】
解:∵BC是圆O的切线,
∴∠OBC=90°,
∵四边形ABCO是平行四边形,
∴AO=BC,
又∵AO=BO,
∴BO=BC,
∴∠BOC=∠BCO=45°,
∵OD=OB,
∴∠ODB=∠OBD,
∵∠ODB+∠OBD=∠BOC,
∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,
故答案为:22.5°.
【点睛】
本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.
5、外
【解析】
【分析】
直接根据点与圆的位置关系的判定方法进行判断.
【详解】
解:∵⊙O的半径是5,点A到圆心O的距离是7,
即点A到圆心O的距离大于圆的半径,
∴点A在⊙O外.
故答案为:外.
【点睛】
本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
三、解答题
1、 (1)见解析
(2)的半径长为.
【解析】
【分析】
(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
(1)
证明:如图,连接,
∵是的切线,
∴,
∵,
∴,
∴,
∵,
∴,
∴,即平分;
(2)
解:如图,连接,
在中,,,
由勾股定理得:,
∵是的直径,
∴,
∴,
∵,
∴,
∴,即,
解得:,
∴的半径长为.
【点睛】
本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
2、 (1)见解析
(2)
【解析】
【分析】
(1)连接OD,根据等腰三角形的性质和角平分线定义证得∠ODA=∠DAE,可证得DO∥MN,根据平行线的性质和切线的判定即可证的结论;
(2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明△ACD∽△ADE,然后根据相似三角形的性质求解AC即可求解.
(1)
证明:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠CAM,∠OAD=∠DAE,
∴∠ODA=∠DAE,
∴DO∥MN,
∵DE⊥MN,
∴DE⊥OD,
∵D在⊙O上,
∴DE是⊙O的切线;
(2)
解:∵∠AED=90°,DE=8,AE=6,
∴AD==10,
连接CD,∵AC是⊙O的直径,
∴∠ADC=∠AED=90°,
∵∠CAD=∠DAE,
∴△ACD∽△ADE,
∴,即,
∴AC=,
∴⊙O的半径是.
【点睛】
本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键.
3、 (1)见解析
(2)见解析
(3)⊙O的半径为5.
【解析】
【分析】
(1)连接OD交BC于H,根据圆周角定理和切线的判定即可证明;
(2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE;
(3)根据垂径定理和勾股定理即可求出结果.
(1)
证明:连接OD交BC于H,如图,
∵点E是△ABC的内心,
∴AD平分∠BAC,
即∠BAD=∠CAD,
∴,
∴OD⊥BC,BH=CH,
∵DM∥BC,
∴OD⊥DM,
∴DM是⊙O的切线;
(2)
证明:∵点E是△ABC的内心,
∴∠ABE=∠CBE,
∵,
∴∠DBC=∠BAD,
∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,
即∠BED=∠DBE,
∴BD=DE;
(3)
解:设⊙O的半径为r,
连接OD,OB,如图,
由(1)得OD⊥BC,BH=CH,
∵BC=8,
∴BH=CH=4,
∵DE=2,BD=DE,
∴BD=2,
在Rt△BHD中,BD2=BH2+HD2,
∴(2)2=42+HD2,解得:HD=2,
在Rt△BHO中,
r2=BH2+(r-2)2,解得:r=5.
∴⊙O的半径为5.
【点睛】
本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.
4、 (1)见解析
(2)4,
【解析】
【分析】
(1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;
(2)设⊙O的半径为R,在Rt△OAE中,勾股定理求出R, 延长CO交⊙O于F,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.
(1)
证明:连接OA.
∵,
∴∠AOC+∠OAD=180°,
∵∠AOC=2∠ABC=2×45°=90°,
∴∠OAD=90°,
∴OA⊥AD,
∵OA是半径,
∴AD是⊙O的切线.
(2)
解:设⊙O的半径为R,则OA=R,OE=R-2.
在Rt△OAE中,,
∴,
解得或(不合题意,舍去),
延长CO交⊙O于F,连接AF,
∵∠AEF=∠CEB,∠B=∠AFE,
∴△CEB∽△AEF,
∴,
∵CF是直径,
∴CF=8,∠CAF=90°,
又∵∠F=∠ABC=45°,
∴∠F=∠ACF=45°,
∴AF=,
∴,
∴BC=.
.
【点睛】
此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.
5、 (1)①,②(4,3)
(2)见解析
【解析】
【分析】
(1)①过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,利用因式分解法解出一元二次方程,求出OD、OC,根据垂径定理求出DH,根据勾股定理计算求出半径,根据圆周角定理得到∠ADB=90°,根据正切的定义计算即可;②过点B作BE⊥x轴于点E,作AG⊥BE于G,根据平行线分线段成比例定理定理分别求出OE、BE,得到点B的坐标;
(2)过点E作EH⊥x轴于H,证明△EHD≌△EFB,得到EH=EF,DH=BF,再证明Rt△EHC≌Rt△EFC,得到CH=CF,结合图形计算,证明结论.
(1)
解:①以AB为直径的圆的圆心为P,
过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,
则DH=HC=DC,四边形AOHF为矩形,
∴AF=OH,FH=OA=1,
解方程x2﹣4x+3=0,得x1=1,x2=3,
∵OC>OD,
∴OD=1,OC=3,
∴DC=2,
∴DH=1,
∴AF=OH=2,
设圆的半径为r,则PH2=,
∴PF=PH﹣FH,
在Rt△APF中,AP2=AF2+PF2,即r2=22+(PH﹣1)2,
解得:r=,PH=2,PF=PH﹣FH=1,
∵∠AOD=90°,OA=OD=1,
∴AD=,
∵AB为直径,
∴∠ADB=90°,
∴BD===3,
∴tan∠ABD===;
②过点B作BE⊥x轴于点E,交圆于点G,连接AG,
∴∠BEO=90°,
∵AB为直径,
∴∠AGB=90°,
∵∠AOE=90°,
∴四边形AOEG是矩形,
∴OE=AG,OA=EG=1,
∵AF=2,
∵PH⊥DC,
∴PH⊥AG,
∴AF=FG=2,
∴AG=OE=4,BG=2PF=2,
∴BE=3,
∴点B的坐标为(4,3);
(2)
证明:过点E作EH⊥x轴于H,
∵点E是的中点,
∴=,
∴ED=EB,
∵四边形EDCB为圆P的内接四边形,
∴∠EDH=∠EBF,
在△EHD和△EFB中,
,
∴△EHD≌△EFB(AAS),
∴EH=EF,DH=BF,
在Rt△EHC和Rt△EFC中,
,
∴Rt△EHC≌Rt△EFC(HL),
∴CH=CF,
∴2CF=CH+CF=CD+DH+BC﹣BF=BC+CD.
【点睛】
本题考查的是圆周角定理、全等三角形的判定和性质、垂径定理、勾股定理的应用,正确作出辅助线、求出圆的半径是解题的关键.
相关试卷
这是一份初中冀教版第29章 直线与圆的位置关系综合与测试精品课时训练,共34页。试卷主要包含了如图所示,在的网格中,A等内容,欢迎下载使用。
这是一份2021学年第29章 直线与圆的位置关系综合与测试精品习题,共30页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试精品课时训练,共31页。