年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    难点详解冀教版八年级数学下册第二十二章四边形章节测评试题(无超纲)

    难点详解冀教版八年级数学下册第二十二章四边形章节测评试题(无超纲)第1页
    难点详解冀教版八年级数学下册第二十二章四边形章节测评试题(无超纲)第2页
    难点详解冀教版八年级数学下册第二十二章四边形章节测评试题(无超纲)第3页
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步达标检测题

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步达标检测题,共33页。
    八年级数学下册第二十二章四边形章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,为了测量一块不规则绿地BC两点间的距离,可以在绿地的一侧选定一点A,然后测量出ABAC的中点DE,如果测量出DE两点间的距离是8m,那么绿地BC两点间的距离是(  )A.4m B.8m C.16m D.20m2、平面上六个点ABCDEF,构成如图所示的图形,则∠A+∠B+∠C+∠D+∠E+∠F度数是(       A.135度 B.180度 C.200度 D.360度3、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线ly=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为(  )A.7 B.6 C.4 D.84、将一长方形纸条按如图所示折叠,,则       A.55° B.70° C.110° D.60°5、如图,点ABC在同一直线上,且,点DE分别是ABBC的中点.分别以ABDEBC为边,在AC同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作,若,则等于(       A. B. C. D.6、如图,在正方形ABCD中,对角线ACBD相交于点OEBC上一点,CE=6,FDE的中点.若OF的长为1,则△CEF的周长为(       A.14 B.16 C.18 D.127、将一张长方形纸片按如图所示的方式折叠,BDBE为折痕,则∠EBD的度数(     A.80° B.90° C.100° D.110°8、如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BADBC边于点E,则EC等于(  )A.1 B.2 C.3 D.49、能够判断一个四边形是矩形的条件是(       A.对角线相等 B.对角线垂直C.对角线互相平分且相等 D.对角线垂直且相等10、如图,平行四边形ABCD,∠BCD=120°,AB=2,BC=4,点E是直线BC上的点,点F是直线CD上的点,连接AFAEEF,点MN分别是AFEF的中点.连接MN,则MN的最小值为(       A.1 B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,EF分别是边ABBC上的动点,且MEF中点,P是边AD上的一个动点,则的最小值是______.2、(1)两组对边分别________的四边形是平行四边形ABCDADBC∴四边形ABCD是平行四边形 (2)两组对边分别________的四边形是平行四边形ABCDADBC∴四边形ABCD是平行四边形 (3)两组对角分别________的四边形是平行四边形∵∠A= ∠CB=∠D∴四边形ABCD是平行四边形 (4)对角线________的四边形是平行四边形AOCOBODO∴四边形ABCD是平行四边形 (5)一组对边________的四边形是平行四边形ADBCADBC∴四边形ABCD是平行四边形3、若过某多边形一个顶点的所有对角线将这个多边形分成3个三角形,则这个多边形是________边形.4、如图,点E是矩形ABCDAD上一点,点FGH分别是BEBCCE的中点,AF=6,则GH的长为_________.5、如图,在矩形中,的角平分线于点,连接恰好平分,若,则的长为______.三、解答题(5小题,每小题10分,共计50分)1、(1)【发现证明】如图1,在正方形中,点分别是边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形中,如果点分别是延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出之间的数量关系______(不要求证明)②如图3,如果点分别是延长线上的动点,且,则之间的数量关系是______(不要求证明)(3)【联想拓展】如图1,若正方形的边长为6,,求的长.2、已知在中,,点在同一直线上,射线分别平分 (1)如图1,试说明的理由;(2)如图2,当交于点G时,设,求的数量关系,并说明理由;(3)当时,求的度数.3、如图,在平行四边形ABCD中,点MAD边的中点,连接BMCM,且BMCM(1)求证:四边形ABCD是矩形;(2)若△BCM是直角三角形,直接写出ADAB之间的数量关系.4、【问题情境】如图1,在中,,垂足为D,我们可以得到如下正确结论:①;②;③,这些结论是由古希酷著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③(2)【结论运用】如图2,正方形的边长为6,点O是对角线的交点,点E上,过点C,垂足为F,连接①求证:②若,求的长.5、如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC于点EAB=6cm,BC=8cm.(1)求证AEEC(2)求阴影部分的面积. -参考答案-一、单选题1、C【解析】【分析】根据三角形中位线定理即可求出【详解】解:中,分别是的中点,为三角形的中位线,故选:C.【点睛】本题考查的是三角形中位线定理的应用,解题的关键是掌握三角形的中位线等于第三边的一半.2、D【解析】【分析】根据三角形外角性质及四边形内角和求解即可.【详解】解:如下图所示:根据三角形的外角性质得,∠1=∠C+∠E,∠2=∠B+∠D∵∠1+∠2+∠A+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故选:D.【点睛】此题考查了三角形的外角性质,熟记三角形外角性质及四边形内角和为360°是解题的关键.3、A【解析】【分析】如图所示,连接ACOB交于点D,先求出C和A的坐标,然后根据矩形的性质得到DAC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.【详解】解:如图所示,连接ACOB交于点DC是直线y轴的交点,∴点C的坐标为(0,2),OA=4,A点坐标为(4,0),∵四边形OABC是矩形,DAC的中点,D点坐标为(2,1),当直线经过点D时,可将矩形OABC的面积平分,由题意得平移后的直线解析式为故选A.【点睛】本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.4、B【解析】【分析】从折叠图形的性质入手,结合平行线的性质求解.【详解】解:由折叠图形的性质结合平行线同位角相等可知,故选:B.【点睛】本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.5、B【解析】【分析】BEx,根据正方形的性质、平行四边形的面积公式分别表示出S1S2S3,根据题意计算即可.【详解】 AB=2BC又∵点DE分别是ABBC的中点,∴设BEx,则ECxADBD=2x∵四边形ABGF是正方形,∴∠ABF=45°,∴△BDH是等腰直角三角形,BDDH=2xS1DHAD,即2x•2xx2BD=2xBExS2MHBD=(3x−2x)•2x=2x2S3ENBExxx2S2S3=2x2x2=3x2故选:B【点睛】本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.6、B【解析】【分析】根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.【详解】解:在正方形ABCD中,FDE的中点,OBD的中点,OF的中位线且CF斜边上的中线,的周长为中,的周长为故选:B【点睛】题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.7、B【解析】【分析】根据翻折的性质可知,∠ABE=∠ABE,∠DBC=∠DBC′,又∠ABE+∠ABE+∠DBC+∠DBC′=180°,且∠EBD=∠ABE+∠DBC′,继而即可求出答案.【详解】解:根据翻折的性质可知,∠ABE=∠ABE,∠DBC=∠DBC′,又∵∠ABE+∠ABE+∠DBC+∠DBC′=180°,∴∠EBD=∠ABE+∠DBC′=180°×=90°.故选B【点睛】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠ABE,∠DBC=∠DBC′是解题的关键.8、B【解析】【分析】根据平行四边形及平行线的性质可得,再由角平分线及等量代换得出,利用等角对等边可得,结合图形即可得出线段长度.【详解】解:∵四边形ABCD为平行四边形,AE平分故选:B.【点睛】题目主要考查 平行四边形及平行线的性质,利用角平分线计算,等角对等边等,理解题意,熟练运用平行四边形的性质是解题关键.9、C【解析】10、C【解析】【分析】先证明NM为△AEF的中位线,根据中位线性质得出MN=,可得AE最小时,MN最小,根据点E在直线BC上,根据点到直线的距离最短得出AEBCAE最短,根据在平行四边形ABCD中,∠BCD=120°,求出∠ABC=180°-∠BCD=180°-120°=60°,利用三角形内角和∠BAE=180°-∠ABE-∠AEB=180°-60°-90°=30°,利用30°直角三角形性质得出BE=,再利用勾股定理求出AE即可.【详解】解:∵MFA中点,NFE中点,NMAEF的中位线,MN=AE最小时,MN最小,∵点E在直线BC上,根据点A到直线BC的距离最短,AEBCAE最短,∵在平行四边形ABCD中,∠BCD=120°,∴∠ABC+∠BCD=180°,∴∠ABC=180°-∠BCD=180°-120°=60°,∴∠BAE=180°-∠ABE-∠AEB=180°-60°-90°=30°,在RtABE中,∠BAE=30°,AB=2,BE=根据勾股定理AE最小=,MN=故选择C.【点睛】本题考查三角形中位线性质,平行四边形性质,点到直线距离,三角形内角和,30°直角三角形性质,勾股定理,掌握三角形中位线性质,平行四边形性质,点到直线距离,三角形内角和,30°直角三角形性质,勾股定理是解题关键.二、填空题1、11【解析】【分析】作点C关于AD的对称点G,连接PGGDBMGB,则当点PM在线段BG上时,GP+PM+BM最小,从而 CP+PM最小,在RtBCG中由勾股定理即可求得BG的长,从而求得最小值.【详解】如图,作点C关于AD的对称点G,连接PGGDBMGB由对称的性质得:PC=PGGD=CD GP+PM+BMBGCP+PM=GP+PMBGBM 则当点PM在线段BG上时,CP+PM最小,且最小值为线段BGBM∵四边形ABCD是矩形CD=AB=6,∠BCD=∠ABC=90°   CG=2CD=12M为线段EF的中点,且EF=4 RtBCG中,由勾股定理得:GM=BGBM=13-2=11 CP+PM的最小值为11.【点睛】本题是求两条线段和的最小值问题,考查了矩形性质,折叠的性质,直角三角形斜边上中线的性质,两点间线段最短,勾股定理等知识,有一定的综合性,关键是作点C关于AD的对称点及连接BMGP+PM+BM的最小值转化为线段CP+PM的最小值.2、     平行     相等     相等     互相平分     平行且相等【解析】3、五【解析】【分析】根据过多边形的一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,计算可求解.【详解】解:设这是个n边形,由题意得n-2=3,n=5,故答案为:五.【点睛】本题主要考查多边形的对角线,掌握多边形对角线的性质是解题的关键.4、6【解析】【分析】由矩形的性质及直角三角形斜边上的中线的性质可求解BE=2AF=12,再利用三角形中位线定理可求解.【详解】解:在矩形ABCD中,∠BAD=90°,FBE的中点,AF=6,BE=2AF=12.GH分别为BCEC的中点,GH=BE=6,故答案为6.【点睛】根据直角三角形斜边上的中线等于斜边的一半,求解BE的长是解题的关键.再根据中位线定理求出GH5、【解析】【分析】根据矩形的性质得,根据BE的角平分线,得,则,在中,根据勾股定理得,根据平行线的性质得,由因为EC平分,等量代换得,所以,即可得.【详解】解:∵四边形ABCD为矩形,BE的角平分线,中,根据勾股定理得,EC平分故答案为:【点睛】本题考查了矩形的性质,勾股定理,角平分线的性质,平行线的性质,解题的关键是掌握这些知识点.三、解答题1、(1)见解析;(2)①不成立,结论:;②,见解析;(3)【解析】【分析】(1)证明,可得出,则结论得证;(2)①将绕点顺时针旋转根据可证明,可得,则结论得证;②将绕点逆时针旋转,证明,可得出,则结论得证;(3)求出,设,则,在中,得出关于的方程,解出则可得解.【详解】(1)证明:把绕点顺时针旋转,如图1,三点共线,(2)①不成立,结论:证明:如图2,将绕点顺时针旋转②如图3,将绕点逆时针旋转故答案为:(3)解:由(1)可知正方形的边长为6,,则中,解得:【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.2、 (1)理由见解析(2),理由见解析(3)【解析】【分析】(1)可知,进而可说明(2)如图1所示,连接并延长至点K分别平分,则设的外角,,同理,得;又由(1)中证明可知,进而可得到结果;(3)如图2所示,过点C,则,可得,由(1)中证明可得,在中, ,即,进而可得到结果.(1)证明:(2)解:理由如下:如图1所示,连接并延长至点K分别平分则设的外角同理可得又由(1)中证明可知由三角形内角和公式可得(3)解:当时,如图2所示,过点C,则,即由(1)中证明可得中,根据三角形内角和定理有,解得:【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接并延长,利用三角形外角性质证得是解题的关键.3、 (1)见解析(2)AD=2AB,理由见解析【解析】【分析】(1)由SSS证明△ABM≌△DCM,得出∠A=∠D,由平行线的性质得出∠A+∠D=180°,证出∠A=90°,即可得出结论;(2)先证明△BCM是等腰直角三角形,得出∠MBC=45°,再证明△ABM是等腰直角三角形,得出AB=AM,即可得出结果.(1)证明:∵点MAD边的中点,AM=DM∵四边形ABCD是平行四边形,AB=DCABCD在△ABM和△DCM中,∴△ABM≌△DCMSSS),∴∠A=∠DABCD∴∠A+∠D=180°,∴∠A=90°,∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)解:ADAB之间的数量关系:AD=2AB,理由如下:∵△BCM是直角三角形,BM=CM∴△BCM是等腰直角三角形,∴∠MBC=45°,由(1)得:四边形ABCD是矩形,ADBC,∠A=90°,∴∠AMB=∠MBC=45°,∴△ABM是等腰直角三角形,AB=AM∵点MAD边的中点,AD=2AMAD=2AB【点睛】本题考查了矩形的判定与性质、平行四边形的性质、平行线的性质、全等三角形的判定与性质、等腰直角三角形的的判定与性质等知识;熟练掌握平行四边形的性质,证明△ABM≌△DCM是解题的关键.4、 (1)见解析;(2)①见解析;②【解析】【分析】(1)由AA证明,再由相似三角形对应边称比例得到,继而解题;(2)①由“射影定理”分别解得,整理出,再结合即可证明②由勾股定理解得,再根据得到,代入数值解题即可.(1)证明:(2)四边形ABCD是正方形中,【点睛】本题考查相似三角形的综合题,涉及勾股定理、正方形等知识,是重要考点,掌握相关知识是解题关键.5、 (1)证明见解析(2)【解析】【分析】(1)先根据折叠的性质可得,再根据矩形的性质、平行线的性质可得,从而可得,然后根据等腰三角形的判定即可得证;(2)设,从而可得,先在中,利用勾股定理可得的值,再利用三角形的面积公式即可得.(1)证明:由折叠的性质得:四边形是长方形,(2)解:四边形是长方形,,则中,,即解得则阴影部分的面积为【点睛】本题考查了矩形与折叠问题、等腰三角形的判定、勾股定理等知识,熟练掌握矩形与折叠的性质是解题关键. 

    相关试卷

    数学八年级下册第十九章 平面直角坐标系综合与测试课后复习题:

    这是一份数学八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共25页。试卷主要包含了在平面直角坐标系中,点,已知点P的坐标为等内容,欢迎下载使用。

    冀教版八年级下册第二十章 函数综合与测试随堂练习题:

    这是一份冀教版八年级下册第二十章 函数综合与测试随堂练习题,共22页。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练,共30页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map