搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试试卷

    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试试卷第1页
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试试卷第2页
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试试卷第3页
    还剩35页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀当堂达标检测题

    展开

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀当堂达标检测题,共38页。试卷主要包含了若O是ABC的内心,当时,等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系专项测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知半圆O的直径AB=8,沿弦EF折叠,当折叠后的圆弧与直径AB相切时,折痕EF的长度m(  )
    A.m=4 B.m=4 C.4≤m≤4 D.4≤m≤4
    2、如图,等边△ABC内接于⊙O,D是上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切⊙O于点C,AF⊥CF交⊙O于点G.下列结论:①∠ADC=60°;②DB2=DE•DA;③若AD=2,则四边形ABDC的面积为;④若CF=2,则图中阴影部分的面积为.正确的个数为(  )

    A.1个 B.2个 C.3个 D.4个
    3、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )

    A.相交 B.相切
    C.相离 D.不确定
    4、的半径为5 , 若直线与该圆相交, 则圆心到直线的距离可能是 ( )
    A.3 B.5 C.6 D.10
    5、若O是ABC的内心,当时,( )
    A.130° B.160° C.100° D.110°
    6、如图,中,,O是AB边上一点,与AC、BC都相切,若,,则的半径为( )

    A.1 B.2 C. D.
    7、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )
    A.点在圆内 B.点在圆外 C.点在圆上 D.无法判断
    8、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC的外接圆的圆心坐标是( )

    A.(-2,-1) B.(-1,0) C.(-1,-1) D.(0,-1)
    9、如图,BE是的直径,点A和点D是上的两点,过点A作的切线交BE延长线于点C,若,则的度数是( )

    A.18° B.28° C.36° D.45°
    10、如图,PA,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为( )

    A.70° B.50° C.20° D.40°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______.


    2、如图,在平面直角坐标系xOy中,P为x轴正半轴上一点.已知点,,为的外接圆.

    (1)点M的纵坐标为______;
    (2)当最大时,点P的坐标为______.
    3、如图,、分别与相切于A、B两点,若,则的度数为________.

    4、如图,与x轴交于、两点,,点P是y轴上的一个动点,PD切于点D,则△ABD的面积的最大值是________;线段PD的最小值是________.

    5、如图,PB与⊙O相切于点B,OP与⊙O相交于点A,∠P=30°,若⊙O的半径为2,则OP的长为 _____.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,是的切线,点在上,与相交于,是的直径,连接,若.

    (1)求证:平分;
    (2)当,时,求的半径长.
    2、如图,点在轴正半轴上,,点是第一象限内的一点,以为直径的圆交轴于,两点,,两点的横坐标是方程的两个根,,连接.

    (1)如图(1),连接.
    ①求的正切值;
    ②求点的坐标.
    (2)如图(2),若点是的中点,作于点,连接,,,求证:.
    3、如图,在RtABC中,∠ACB=Rt∠,以AC为直径的半圆⊙O交AB于点D,E为BC的中点,连结DE、CD.过点D作DF⊥AC于点F.

    (1)求证:DE是⊙O的切线;
    (2)若AD=5,DF=3,求⊙O的半径.
    4、如图,点E是的内心,AE的延长线交BC于点F,交的外接圆点D.过D作直线.

    (1)求证:DM是的切线;
    (2)求证:;
    (3)若,,求的半径.
    5、如图,在中,,平分交于点D,点O在上,以点O为圆心,为半径的圆恰好经过点D,分别交、于点E、F.

    (1)试判断直线与的位置关系,并说明理由;
    (2)若,,求阴影部分的面积(结果保留).

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    根据题意作出图形,根据垂径定理可得,设,则,分情况讨论求得最大值与最小值,即可解决问题
    【详解】
    解:如图,

    根据题意,折叠后的弧为,为切点,设点为所在的圆心,的半径相等,即,连接,设交于点,
    根据折叠的性质可得,又则四边形是菱形,且

    设,则
    则当取得最大值时,取得最小值,即取得最小值,
    当取得最小值时,取得最大值,
    根据题意,当点于点重合时,四边形是正方形


    此时
    当点与点重合时,此时最小,





    故选D
    【点睛】
    本题考查了垂径定理,切线的性质,折叠的性质,勾股定理,分别求得的最大值与最小值是解题的关键.
    2、C
    【解析】
    【分析】
    如图1,△ABC是等边三角形,则∠ABC=60°,根据同弧所对的圆周角相等∠ADC=∠ABC=60°,所以判断①正确;如图1,可证明△DBE∽△DAC,则,所以DB•DC=DE•DA,而DB与DC不一定相等,所以判断②错误;如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,先证明△ABK≌△ACD,可证明S四边形ABDC=S△ADK,可以求得S△ADK=,所以判断③正确;如图3,连接OA、OG、OC、GC,由CF切⊙O于点C得CF⊥OC,而AF⊥CF,所以AF∥OC,由圆周角定理可得∠AOC=120°,则∠OAC=∠OCA=30°,于是∠CAG=∠OCA=30°,则∠COG=2∠CAG=60°,可证明△AOG和△COG都是等边三角形,则四边形OABC是菱形,因此OA∥CG,推导出S阴影=S扇形COG,在Rt△CFG中根据勾股定理求出CG的长为4,则⊙O的半径为4,可求得S阴影=S扇形COG==,所以判断④正确,所以①③④这3个结论正确.
    【详解】
    解:如图1,∵△ABC是等边三角形,
    ∴∠ABC=60°,
    ∵等边△ABC内接于⊙O,
    ∴∠ADC=∠ABC=60°,
    故①正确;
    ∵∠BDE=∠ACB=60°,∠ADC=∠ABC=60°,
    ∴∠BDE=∠ADC,
    又∠DBE=∠DAC,
    ∴△DBE∽△DAC,
    ∴,
    ∴DB•DC=DE•DA,
    ∵D是上任一点,
    ∴DB与DC不一定相等,
    ∴DB•DC与DB2也不一定相等,
    ∴DB2与DE•DA也不一定相等,
    故②错误;

    如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,
    ∵∠ABK+∠ABD=180°,∠ACD+∠ABD=180°,
    ∴∠ABK=∠ACD,
    ∴AB=AC,
    ∴△ABK≌△ACD(SAS),
    ∴AK=AD,S△ABK=S△ACD,
    ∴DH=KH=DK,

    ∵∠AHD=90°,∠ADH=60°,
    ∴∠DAH=30°,
    ∵AD=2,
    ∴DH=AD=1,
    ∴DK=2DH=2,,
    ∴S△ADK=,
    ∴S四边形ABDC=S△ABD+S△ACD=S△ABD+S△ABK=S△ADK=,
    故③正确;
    如图3,连接OA、OG、OC、GC,则OA=OG=OC,
    ∵CF切⊙O于点C,
    ∴CF⊥OC,
    ∵AF⊥CF,
    ∴AF∥OC,
    ∵∠AOC=2∠ABC=120°,
    ∴∠OAC=∠OCA=×(180°﹣120°)=30°,
    ∴∠CAG=∠OCA=30°,
    ∴∠COG=2∠CAG=60°,
    ∴∠AOG=60°,
    ∴△AOG和△COG都是等边三角形,
    ∴OA=OC=AG=CG=OG,
    ∴四边形OABC是菱形,
    ∴OA∥CG,
    ∴S△CAG=S△COG,
    ∴S阴影=S扇形COG,
    ∵∠OCF=90°,∠OCG=60°,
    ∴∠FCG=30°,
    ∵∠F=90°,
    ∴FG=CG,
    ∵FG2+CF2=CG2,CF=,
    ∴(CG)2+()2=CG2,
    ∴CG=4,
    ∴OC=CG=4,
    ∴S阴影=S扇形COG==,
    故④正确,
    ∴①③④这3个结论正确,
    故选C.

    【点睛】
    本题主要考查了等边三角形的性质与判定,圆切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.
    3、B
    【解析】
    【分析】
    根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
    【详解】
    解:连接,

    ,点O为AB中点.

    CO为⊙C的半径,
    是的切线,
    ⊙C 与AB的位置关系是相切
    故选B
    【点睛】
    本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
    4、A
    【解析】
    【分析】
    根据直线l和⊙O相交⇔d<r,即可判断.
    【详解】
    解:∵⊙O的半径为5,直线l与⊙O相交,
    ∴圆心D到直线l的距离d的取值范围是0≤d<5,
    故选:A.
    【点睛】
    本题考查直线与圆的位置关系,解题的关键是记住①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.
    5、A
    【解析】
    【分析】
    由三角形内角和以及内心定义计算即可
    【详解】


    又∵O是ABC的内心
    ∴OB、OC为角平分线,

    ∴180°=180°-50°=130°
    故选:A.
    【点睛】
    本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆.三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.
    6、D
    【解析】
    【分析】
    作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,根据切线的性质得OD=OE=r,易得四边形ODCE为正方形,则CD=OD=r,再证明△ADO∽△ACB,然后利用相似比得到,再根据比例的性质求出r即可.
    【详解】
    解:作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,

    ∵⊙O与AC、BC都相切,
    ∴OD=OE=r,
    而∠C=90°,
    ∴四边形ODCE为正方形,
    ∴CD=OD=r,
    ∵OD∥BC,
    ∴△ADO∽△ACB,

    ∵AF=AC-r,BC=3,AC=4,
    代入可得,
    ∴r=.
    故选:D.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了相似三角形的判定与性质.
    7、A
    【解析】
    【分析】
    直接根据点与圆的位置关系进行解答即可.
    【详解】
    解:∵⊙O的半径为5cm,点P与圆心O的距离为4cm,5cm>4cm,
    ∴点P在圆内.
    故选:A.
    【点睛】
    本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外.
    8、A
    【解析】
    【分析】
    首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.
    【详解】
    解:∵△ABC的外心即是三角形三边垂直平分线的交点,
    如图所示:EF与MN的交点O′即为所求的△ABC的外心,
    ∴△ABC的外心坐标是(﹣2,﹣1).
    故选:A

    【点睛】
    此题考查了三角形外心的知识.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.
    9、A
    【解析】
    【分析】
    连接,根据同弧所对的圆周角相等可得,根据圆周角定理可得,根据切线的性质以及直角三角形的两锐角互余即可求得的度数.
    【详解】
    解:如图,连接




    是的切线


    故选A
    【点睛】
    本题考查了切线的性质,圆周角定理,求得的度数是解题的关键.
    10、D
    【解析】
    【分析】
    首先连接OA,OB,由PA,PB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.
    【详解】
    解:连接OA,OB,

    ∵PA,PB为⊙O的切线,
    ∴∠OAP=∠OBP=90°,
    ∵∠ACB=70°,
    ∴∠AOB=2∠P=140°,
    ∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.
    故选:D.
    【点睛】
    此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.
    二、填空题
    1、6
    【解析】
    【分析】
    如图,连接OA、OB、OC、OD、OE、OF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.
    【详解】
    解:如图,连接OA、OB、OC、OD、OE、OF.
    ∵正六边形ABCDEF,
    ∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,
    ∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,
    ∵的周长为,
    ∴的半径为,
    正六边形的边长是6;

    【点睛】
    本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.
    2、 5 (4,0)
    【解析】
    【分析】
    (1)根据点M在线段AB的垂直平分线上求解即可;
    (2)点P在⊙M切点处时,最大,而四边形OPMD是矩形,由勾股定理求解即可.
    【详解】
    解:(1)∵⊙M为△ABP的外接圆,
    ∴点M在线段AB的垂直平分线上,
    ∵A(0,2),B(0,8),
    ∴点M的纵坐标为:,
    故答案为:5;
    (2)过点,,作⊙M与x轴相切,则点M在切点处时,最大,
    理由:
    若点是x轴正半轴上异于切点P的任意一点,
    设交⊙M于点E,连接AE,则∠AEB=∠APB,
    ∵∠AEB是ΔAE的外角,
    ∴∠AEB>∠AB,
    ∵∠APB>∠AB,即点P在切点处时,∠APB最大,
    ∵⊙M经过点A(0,2)、B(0,8),
    ∴点M在线段AB的垂直平分线上,即点M在直线y=5上,
    ∵⊙M与x轴相切于点P,MP⊥x轴,从而MP=5,即⊙M的半径为5,
    设AB的中点为D,连接MD、AM,如上图,则MD⊥AB,AD=BD=AB=3,BM=MP=5,
    而∠POD=90°,
    ∴四边形OPMD是矩形,从而OP=MD,
    由勾股定理,得
    MD=,
    ∴OP=MD=4,
    ∴点P的坐标为(4,0),
    故答案为:(4,0).

    【点睛】
    本题考查了切线的性质,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关键.
    3、
    【解析】
    【分析】
    根据已知条件可得出,,再利用圆周角定理得出即可.
    【详解】
    解:、分别与相切于、两点,
    ,,



    故答案为:.
    【点睛】
    本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.
    4、 ##0.5
    【解析】
    【分析】
    根据题中点的坐标可得圆的直径,半径为1,分析以AB定长为底,点D在圆上,高最大为圆的半径,即可得出三角形最大的面积;连接AP,设点,根据切线的性质及勾股定理可得,由其非负性即可得.
    【详解】
    解:如图所示:当点P到如图位置时,的面积最大,

    ∵、,
    ∴圆的直径,半径为1,
    ∴以AB定长为底,点D在圆上,高最大为圆的半径,如图所示:
    此时面积的最大值为:;
    如图所示:连接AP,

    ∵PD切于点D,
    ∴,
    ∴,
    设点,
    在中,,,
    ∴,
    在中,,
    ∴,
    则,
    当时,PD取得最小值,
    最小值为,
    故答案为:①;②.
    【点睛】
    题目主要考查切线的性质及勾股定理的应用,理解题意,作出相应图形求出解析式是解题关键.
    5、4
    【解析】
    【分析】
    连接OB,利用切线性质,判定三角形POB是直角三角形,利用直角三角形的性质,确定PO的长度即可.
    【详解】
    如图,连接OB,
    ∵PB与⊙O相切于点B,

    ∴∠PBO=90°,
    ∵∠P=30°,OB=2,
    ∴PO=4,
    故答案为:4.
    【点睛】
    本题考查了切线性质,直角三角形的性质,熟练掌握切线的性质是解题的关键.
    三、解答题
    1、 (1)见解析
    (2)的半径长为.
    【解析】
    【分析】
    (1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
    (2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
    (1)
    证明:如图,连接,
    ∵是的切线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,即平分;

    (2)
    解:如图,连接,
    在中,,,
    由勾股定理得:,
    ∵是的直径,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,即,
    解得:,
    ∴的半径长为.

    【点睛】
    本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
    2、 (1)①,②(4,3)
    (2)见解析
    【解析】
    【分析】
    (1)①过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,利用因式分解法解出一元二次方程,求出OD、OC,根据垂径定理求出DH,根据勾股定理计算求出半径,根据圆周角定理得到∠ADB=90°,根据正切的定义计算即可;②过点B作BE⊥x轴于点E,作AG⊥BE于G,根据平行线分线段成比例定理定理分别求出OE、BE,得到点B的坐标;
    (2)过点E作EH⊥x轴于H,证明△EHD≌△EFB,得到EH=EF,DH=BF,再证明Rt△EHC≌Rt△EFC,得到CH=CF,结合图形计算,证明结论.
    (1)
    解:①以AB为直径的圆的圆心为P,
    过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,
    则DH=HC=DC,四边形AOHF为矩形,
    ∴AF=OH,FH=OA=1,
    解方程x2﹣4x+3=0,得x1=1,x2=3,
    ∵OC>OD,
    ∴OD=1,OC=3,
    ∴DC=2,
    ∴DH=1,
    ∴AF=OH=2,
    设圆的半径为r,则PH2=,
    ∴PF=PH﹣FH,
    在Rt△APF中,AP2=AF2+PF2,即r2=22+(PH﹣1)2,
    解得:r=,PH=2,PF=PH﹣FH=1,
    ∵∠AOD=90°,OA=OD=1,
    ∴AD=,
    ∵AB为直径,
    ∴∠ADB=90°,
    ∴BD===3,
    ∴tan∠ABD===;
    ②过点B作BE⊥x轴于点E,交圆于点G,连接AG,
    ∴∠BEO=90°,
    ∵AB为直径,
    ∴∠AGB=90°,
    ∵∠AOE=90°,
    ∴四边形AOEG是矩形,
    ∴OE=AG,OA=EG=1,
    ∵AF=2,
    ∵PH⊥DC,
    ∴PH⊥AG,
    ∴AF=FG=2,
    ∴AG=OE=4,BG=2PF=2,
    ∴BE=3,
    ∴点B的坐标为(4,3);

    (2)
    证明:过点E作EH⊥x轴于H,
    ∵点E是的中点,
    ∴=,
    ∴ED=EB,
    ∵四边形EDCB为圆P的内接四边形,
    ∴∠EDH=∠EBF,
    在△EHD和△EFB中,

    ∴△EHD≌△EFB(AAS),
    ∴EH=EF,DH=BF,
    在Rt△EHC和Rt△EFC中,

    ∴Rt△EHC≌Rt△EFC(HL),
    ∴CH=CF,
    ∴2CF=CH+CF=CD+DH+BC﹣BF=BC+CD.

    【点睛】
    本题考查的是圆周角定理、全等三角形的判定和性质、垂径定理、勾股定理的应用,正确作出辅助线、求出圆的半径是解题的关键.
    3、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接OD,求出DE=CE=BE,推出∠EDC+∠ODC=∠ECD +∠OCD,求出∠ACB=∠ODE=90°,根据切线的判定推出即可.
    (2)根据勾股定理求出AF=3,设OD=x,根据勾股定理列出方程即可.
    (1)
    证明:连接OD,
    ∵AC是直径,
    ∴∠ADC=90°,
    ∴∠BDC=180°﹣∠ADC=90°,
    ∵E是BC的中点,
    ∴,
    ∴∠EDC=∠ECD,
    ∵OC=OD,
    ∴∠ODC=∠OCD,
    ∴∠EDC+∠ODC=∠ECD +∠OCD,
    即∠ACB=∠ODE,
    ∵∠ACB=90°,
    ∴∠ODE=90°,
    又∵OD是半径,
    ∴DE是⊙O的切线.

    (2)
    解:设OD=x,
    ∵DF⊥AC,AD=5,DF=3,
    ∴,
    在三角形ADF中,

    解得,,
    ⊙O的半径为.
    【点睛】
    本题考查了切线的证明和直角三角形的性质,解题关键是熟练运用直角三角形和等腰三角形的性质证明切线,利用勾股定理求半径.
    4、 (1)见解析
    (2)见解析
    (3)⊙O的半径为5.
    【解析】
    【分析】
    (1)连接OD交BC于H,根据圆周角定理和切线的判定即可证明;
    (2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE;
    (3)根据垂径定理和勾股定理即可求出结果.
    (1)
    证明:连接OD交BC于H,如图,

    ∵点E是△ABC的内心,
    ∴AD平分∠BAC,
    即∠BAD=∠CAD,
    ∴,
    ∴OD⊥BC,BH=CH,
    ∵DM∥BC,
    ∴OD⊥DM,
    ∴DM是⊙O的切线;
    (2)
    证明:∵点E是△ABC的内心,

    ∴∠ABE=∠CBE,
    ∵,
    ∴∠DBC=∠BAD,
    ∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,
    即∠BED=∠DBE,
    ∴BD=DE;
    (3)
    解:设⊙O的半径为r,
    连接OD,OB,如图,

    由(1)得OD⊥BC,BH=CH,
    ∵BC=8,
    ∴BH=CH=4,
    ∵DE=2,BD=DE,
    ∴BD=2,
    在Rt△BHD中,BD2=BH2+HD2,
    ∴(2)2=42+HD2,解得:HD=2,
    在Rt△BHO中,
    r2=BH2+(r-2)2,解得:r=5.
    ∴⊙O的半径为5.
    【点睛】
    本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.
    5、 (1)BC与⊙O相切,理由见详解
    (2)
    【解析】
    【分析】
    (1)根据题意先证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;
    (2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.
    (1)
    解: BC与⊙O相切.
    证明:∵AD是∠BAC的平分线,
    ∴∠BAD=∠CAD.
    又∵OD=OA,
    ∴∠OAD=∠ODA.
    ∴∠CAD=∠ODA.
    ∴OD∥AC.
    ∴∠ODB=∠C=90°,即OD⊥BC.
    又∵BC过半径OD的外端点D,
    ∴BC与⊙O相切;
    (2)
    ∵,∠ODB=90°,,
    ∴,
    在Rt△OBD中,
    由勾股定理得:,
    ∴S△OBD= OD•BD= ,S扇形ODF= ,
    ∴阴影部分的面积=.
    【点睛】
    本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题,共33页。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课时练习:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课时练习,共37页。试卷主要包含了下列四个命题中,真命题是,在平面直角坐标系中,以点等内容,欢迎下载使用。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后测评:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后测评,共29页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map