|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数重点解析试题(含详解)
    立即下载
    加入资料篮
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数重点解析试题(含详解)01
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数重点解析试题(含详解)02
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数重点解析试题(含详解)03
    还剩26页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第30章 二次函数综合与测试优秀精练

    展开
    这是一份2020-2021学年第30章 二次函数综合与测试优秀精练,共29页。

    九年级数学下册第三十章二次函数重点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )

    A.2个 B.3个 C.4个 D.5个
    2、已知二次函数y=ax2-2ax-1(a是常数,a≠0),则下列命题中正确的是( )
    A.若a=1,函数图象经过点(-1,1) B.若a=-2,函数图象与x轴交于两点
    C.若a<0,函数图象的顶点在x轴下方 D.若a>0且x≥1,则y随x增大而减小
    3、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )
    A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
    C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
    4、抛物线的函数表达式为,若将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )
    A. B.
    C. D.
    5、已知二次函数y=ax2+4x+1的图象与x轴有公共点,则a的取值范围是( )
    A.a<4 B.a≤4 C.a<4且a≠0 D.a≤4且a≠0
    6、已知二次函数y=x2﹣2x+m,点A(x1,y1)、点B(x2,y2)(x1<x2)是图象上两点,下列结论正确的是(  )
    A.若x1+x2<2,则y1>y2 B.若x1+x2>2,则y1>y2
    C.若x1+x2<﹣2,则y1<y2 D.若x1+x2>﹣2,则y1>y2
    7、二次函数的图象如图所示,那么下列说法正确的是( )

    A. B.
    C. D.
    8、已知二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论错误的是( )

    A. B. C. D.
    9、已知二次函数的图象如图所示,对称轴为直线,下列结论中正确的是( )

    A. B. C. D.
    10、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论正确的是( )

    A.ac>0 B.a+b=1 C.4ac﹣b2≠4a D.a+b+c>0
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、最大值与最小值之和为_________.
    2、当k-2≤x≤k时,函数y=x2-4x+4(k为常数)的最小值为4,则k的值是____.
    3、二次函数y=ax2+bx+4的图象如图所示,则关于x的方程a(x+1)2+b(x+1)=﹣4的根为______.

    4、定义:直线y=ax+b(a≠0)称作抛物线y=ax2+bx(a≠0)的关联直线. 根据定义回答以下问题:
    (1)已知抛物线y=ax2+bx(a≠0)的关联直线为y=x+2, 则该抛物线的顶点坐标为_________;
    (2)当a=1时, 请写出抛物线y=ax2+bx与其关联直线所共有的特征(写出一条即可):___________________________________.
    5、已知二次函数y1=x2-2x+b的图象过点(-2,5),另有直线y2=5,则符合条件y1>y2的x的范围是________.
    三、解答题(5小题,每小题10分,共计50分)
    1、抛物线与x轴交和点B,交y轴于点C,对称轴为直线.

    (1)求抛物线的解析式;
    (2)如图,若点D为线段BC下方抛物线上一点,过点D作轴于点E,再过点E作于点F,请求出的最大值.
    2、如图, 在平面直角坐标系 中, 直线 与 牰交于点 , 与 轴交于点 . 点C为拋物线 的顶点.

    (1)用含 的代数式表示顶点 的坐标:
    (2)当顶点 在 内部, 且 时,求抛物线的表达式:
    (3)如果将抛物线向右平移一个单位,再向下平移 个单位后,平移后的抛物线的顶 点 仍在 内, 求 的取值范围.
    3、如图,直线和抛物线都经过点,.

    (1)求m,n的值.
    (2)求不等式的解集(直接写出答案)
    4、已知抛物线与x轴有交点,求m的取值范围.
    5、如图,抛物线与轴交于两点(A点在B点的左侧),与y轴交于点C,连接AC,BC,A点的坐标是(,0),点P是抛物线上的一个动点,其横坐标为m,且m>0.

    (1)求此抛物线的解析式;
    (2)若点Q是直线AC上的一个动点,且位于x轴的上方,当PQ∥y轴时,作PM⊥PQ,交抛物线于点M(点M在点P的右侧),以PQ,PM为邻边构造矩形PQNM,求该矩形周长的最小值;
    (3)设抛物线在点C与点P之间的部分(含点C和P)最高点与最低点的纵坐标之差为h.
    ①求h关于m的函数解析式,并写出自变量m的取值范围;
    ②当h=16时,直接写出△BCP的面积.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    根据图像,确定a,b,c的符号,根据对称轴,确定b,a的关系,当x=-1时,得到a-b+c=0,确定a,c的关系,从而化简一元二次方程,求其根即可,利用平移的思想,把y=的图像向上平移1个单位即可,确定方程的根.
    【详解】
    ∵抛物线开口向上,
    ∴a>0,
    ∵抛物线与y轴的交点在y轴的负半轴上,
    ∴c<0,
    ∵抛物线的对称轴在y轴的右边,
    ∴b<0,
    ∴,
    故①正确;
    ∵二次函数的图像与x轴交于点,
    ∴a-b+c=0,
    根据对称轴的左侧,y随x的增大而减小,
    当x=-2时,y>0即,
    故②正确;
    ∵,

    ∴b= -2a,
    ∴3a+c=0,
    ∴2a+c=2a-3a= -a<0,
    故③正确;
    根据题意,得,
    ∴,
    解得,
    故④错误;
    ∵=0,
    ∴,
    ∴y=向上平移1个单位,得y=+1,
    ∴为方程的两个根,且且.
    故⑤正确;
    故选C.
    【点睛】
    本题考查了抛物线的图像与系数的符号,抛物线的对称性,抛物线与一元二次方程的关系,抛物线的增减性,平移,熟练掌握抛物线的性质,抛物线与一元二次方程的关系是解题的关键.
    2、B
    【解析】
    【分析】
    根据二次函数的图象与性质逐项分析即可.
    【详解】
    A、当a=1,x=-1时,,故函数图象经过点(-1,2),不经过点(-1,1),故命题错误;
    B、a=-2时,函数为,令y=0,即,由于,所以方程有两个不相等的实数根,从而函数图象与x轴有两个不同的交点,故命题正确;
    C、当a<0时, ,其顶点坐标为,当a=−1时,顶点坐标为(1,0 ),在x轴上,故命题错误;
    D、由于,抛物线的对称轴为直线x=1,当a>0且x≥1时,y随x增大而增大,故命题错误.
    故选:B
    【点睛】
    本题考查了二次函数的图象与性质、二次函数与一元二次方程的关系,熟练掌握这些知识是解题的关键.
    3、C
    【解析】
    【分析】
    根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.
    【详解】
    解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,
    ∵-2<0<2<3<5,
    ∴y3<y2<y4<y1,
    若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,
    若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,
    若y2y4<0,则y1y3<0,选项C符合题意,
    若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,
    故选:C.
    【点睛】
    本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
    4、C
    【解析】
    【分析】
    此题可以转化为求将抛物线“向右平移3个单位长度,向上平移3个单位长度”后所得抛物线解析式,将抛物线直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.
    【详解】
    解:∵抛物线的顶点坐标为 ,
    ∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线顶点坐标为 ,
    ∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线的解析式为,
    ∴将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为.
    故选:C
    【点睛】
    此题主要考查了二次函数图象与几何变换,正确掌握平移规律——左加右减,上加下减是解题关键.
    5、D
    【解析】
    【分析】
    由二次函数的定义得a≠0,再由二次函数y=ax2+4x+1的图象与x轴有公共点得到Δ≥0,解不等式即可.
    【详解】
    解:∵二次函数y=ax2+4x+1的图象与x轴有公共点,
    ∴Δ=42﹣4a×1≥0,且a≠0,
    解得:a≤4,且a≠0.
    故选:D.
    【点睛】
    本题考查二次函数的图象与x轴的交点,关键是Δ=b2−4ac决定抛物线与x轴交点的个数.
    6、A
    【解析】
    【分析】
    由二次函数y=x2﹣2x+m可知对称轴为x=1,当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离小,再结合抛物线开口方向,即可判断.
    【详解】
    解:∵二次函数y=x2﹣2x+m,
    ∴抛物线开口向上,对称轴为x=1,
    ∵x1<x2,
    ∴当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,
    ∴y1>y2,
    故选:A.
    【点睛】
    本题考查了二次函数的性质,灵活应用x1+x2与2的关系确定点A、点B与对称轴的关系是解决本题的关键.
    7、D
    【解析】
    【分析】
    根据二次函数图象性质解题.
    【详解】
    解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;
    B.二次函数图象与y轴交于负半轴,即c<0,故B不符合题意;
    C.由图象可知,当x=1时,y=,故C不符合题意,
    D.由图象的对称性可知,抛物线与x轴的另一个交点为(-2,0),当x=-2时,,,故D符合题意,
    故选:D.
    【点睛】
    本题考查二次函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.
    8、B
    【解析】
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    解:A、函数的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故A正确,不符合题意;
    B、函数的对称轴为:x=−=1,故2a+b=0,即,图象与x轴交于点A(−1,0),
    故当时,,即,故B错误,符合题意;
    C、图象与x轴交于点A(−1,0),其对称轴为直线x=1,则图象与x轴另外一个交点坐标为:(3,0),故当x=2时,y=4a+2b+c>0,故C正确,不符合题意;
    D、图象与x轴另外一个交点坐标为:(3,0),即x=3时,y=9a+3b+c=0,正确,不符合题意;
    故选:B.
    【点睛】
    本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.
    9、D
    【解析】
    【分析】
    由抛物线的开口方向判断与0的关系,由抛物线与轴的交点判断与0的关系,然后根据对称轴确定的符号,进而对所得结论进行判断.
    【详解】
    解:图象开口向上,与轴交于负半轴,对称轴在轴右侧,
    得到:,,,,
    A、,,,得,故选项错误,不符合题意;
    B、对称轴为直线,得,解得,故选项错误,不符合题意;
    C、当时,得,整理得:,故选项错误,不符合题意;
    D、根据图象知,抛物线与轴的交点横坐标,是一正一负,即,根据,整理得:,根据对称性可得出,则,故选项正确,符合题意;
    故选:D.
    【点睛】
    本题主要考查二次函数图象与二次函数系数之间的关系,解题的关键是掌握二次函数系数符号由抛物线开口方向、对称轴、抛物线与轴的交点、抛物线与轴交点的个数确定.
    10、D
    【解析】
    【分析】
    由抛物线开口方向及抛物线与轴交点位置,即可得出、,进而判断结论A;由抛物线顶点的横坐标可得出,进而判断结论B;由抛物线顶点的纵坐标可得出,进而判断结论C;由、,进而判断结论D.由此即可得出结论.
    【详解】
    解:A、抛物线开口向下,且与轴正半轴相交,
    ,,
    ,结论A错误,不符合题意;
    B、抛物线顶点坐标为,,

    ,即,结论B错误,不符合题意;
    C、抛物线顶点坐标为,,

    ,结论C错误,不符合题意;
    D、,,
    ,结论D正确,符合题意.
    故选:D.
    【点睛】
    本题考查了二次函数图象与系数的关系以及二次函数的性质,解题的关键是观察函数图象,逐一分析四个选项的正误.
    二、填空题
    1、##
    【解析】
    【分析】
    将已知式子化成,分和两种情况,再利用一元二次方程根的判别式可得一个关于的不等式,然后利用二次函数的性质求出的取值范围,从而可得的最大值与最小值,由此即可得出答案.
    【详解】
    解:由得:,
    ①当时,;
    ②当时,则关于的方程根的判别式大于或等于0,
    即,
    整理得:,
    解方程得:,
    则对于二次函数,当时,的取值范围为,且,
    综上,的取值范围为,
    所以的最大值为3,最小值为,
    所以的最大值与最小值之和为,
    故答案为:.
    【点睛】
    本题考查了一元二次方程根的判别式、二次函数的性质等知识,将求最值问题转化为一元二次方程问题是解题关键.
    2、0或6##6或0
    【解析】
    【分析】
    先求出函数的顶点坐标,再根据题意分情况讨论即可求解.
    【详解】
    ∵y=x2-4x+4=(x-2)2
    ∴顶点坐标为(2,0)
    ∴当k≤2时,x=k时,函数y=x2-4x+4的最小值为4
    故k2-4k+4=4
    解得k=0或k=4(舍去)
    当k-2≥2时,x= k-2时,函数y=x2-4x+4的最小值为4
    故(k-2)2-4(k-2)+4=4
    解得k=6或k=2(舍去)
    故答案为6或0.
    【点睛】
    此题主要考查二次函数的图象与性质,解题的关键是根据题意分情况讨论.
    3、x=-5或x=0##或
    【解析】
    【分析】
    根据图象求出方程ax2+bx+4=0的解,再根据方程的特点得到x+1=-4或x+1=1,求出x的值即可.
    【详解】
    解:由图可知:二次函数y=ax2+bx+4与x轴交于(-4,0)和(1,0),
    ∴ax2+bx+4=0的解为:x=-4或x=1,
    则在关于x的方程a(x+1)2+b(x+1)=-4中,
    x+1=-4或x+1=1,
    解得:x=-5或x=0,
    即关于x的方程a(x+1)2+b(x+1)=-4的解为x=-5或x=0,
    故答案为:x=-5或x=0.
    【点睛】
    本题考查的是抛物线与x轴的交点,能根据题意利用数形结合求出方程的解是解答此题的关键.
    4、 (-1,-1) (1,1+b).
    【解析】
    【分析】
    (1)由关联直线的定义可求得a和b的值,可求得抛物线解析式,化为顶点式可求得其顶点坐标;
    (2)由关联直线的定义可求得关联直线解析式,可写出其共有特征.
    【详解】
    解:(1)∵抛物线y=ax2+bx(a≠0)的关联直线为y=x+2,
    ∴a=1,b=2,
    ∴抛物线解析式为y=x2+2x=(x+1)2-1,
    ∴抛物线顶点坐标为(-1,-1),
    故答案为:(-1,-1);
    (2)当a=1时,抛物线解析式为y=x2+bx,则关联直线解析式为y=x+b,
    ∴当x=1时,函数值都为1+b,
    ∴抛物线及其关联直线都过点(1,1+b),
    故答案为:过点(1,1+b).
    【点睛】
    本题主要考查二次函数的性质,理解好题目中所给关联直线的解析式与抛物线解析式之间的关系是解题的关键.
    5、x<−2或x>4## x>4或x<-2
    【解析】
    【分析】
    先根据抛物线经过点(-2,5),求出函数解析式,再求出抛物线的对称轴,根据函数的对称性,找到抛物线经过另一点(4,5),从而得出结论.
    【详解】
    解:∵二次函数y1=x2-2x+b的图象过点(-2,5),
    ∴5=(-2)2-2×(-2)+b,
    解得:b=-3,
    ∴二次函数解析式y1=x2-2x-3,
    ∴抛物线开口向上,对称轴为x=-=1,
    ∴抛物线过点(4,5),
    ∴符合条件y1>y2的x的范围是x<-2或x>4.
    故答案为:x<-2或x>4.
    【点睛】
    本题考查了二次函数与不等式(组),关键是对二次函数的图象与性质的掌握和应用.
    三、解答题
    1、 (1)
    (2)
    【解析】
    【分析】
    (1)根据二次函数的对称轴及过一点,建立等式进行求解;
    (2)先证明出是等腰三角形,再利用二次函数的性质结合配方法求解即可.
    (1)
    解:对称轴为,
    把代入得:,
    解得:,
    抛物线的解析式为;
    (2)
    解:设点D的坐标为,
    点D在BC的下方,





    是等腰三角形,

    轴,
    E的坐标为,



    当时,的最大值是.
    【点睛】
    本题考查了求解二次函数的解析式、二次函数的性质,等腰三角形的判定及性质,解题的关键是求解出解析式.
    2、 (1)
    (2);
    (3)1<a<3
    【解析】
    【分析】
    (1)利用配方法将抛物线解析式化为顶点式即可解答;
    (2)求出点A、B的坐标,利用三角形面积公式求解a值即可解答;
    (3)根据点的坐标平移规律“右加左减,上加下减”得出P点坐标,再根据条件得出a的一元一次不等式组,解不等式组即可求解
    (1)
    解:拋物线 ,
    ∴顶点C的坐标为;
    (2)
    解:对于,当x=0时,y=5,当y=0时,x=5,
    ∴A(5,0),B(0,5),
    ∵顶点 在 内部, 且 ,
    ∴,
    ∴a=2,
    ∴拋物线的表达式为 ;
    (3)
    解:由题意,平移后的抛物线的顶点P的坐标为,
    ∵平移后的抛物线的顶 点 仍在 内,
    ∴,
    解得:1<a<3,
    即 的取值范围为1<a<3.
    【点睛】
    本题考查求二次函数的顶点坐标和表达式、二次函数的图象平移、一次函数的图象与坐标轴的交点问题、坐标与图象、解一元一次不等式组,熟练掌握相关知识的联系与运用,第(3)小问正确得出不等式组是解答的关键.
    3、 (1)m=-1,n=2
    (2)x<1或x>3
    【解析】
    【分析】
    (1)将点A坐标代入y=x+m可得m的值,然后把B点坐标代入直线y=x+m中求出n的值即可;
    (2)根据函数图象可知不等式的解集即为二次函数的函数图像在一次函数的函数图像上方自变量的取值范围,进行求解即可.
    (1)
    解:将点A(1,0)代入y=x+m可得1+m=0,
    解得:m=-1,
    ∴直线AB的解析式为y=x-1,
    ∵点B(3,n)在直线y=x-1上,
    ∴n=3-1=2;
    (2)
    由函数图象可知不等式的解集即为二次函数的函数图像在一次函数的函数图像上方自变量的取值范围,
    ∴不等式的解集为x<1或x>3.
    【点睛】
    本题主要考查了待定系数法求一次函数解析式,求一次函数函数值,利用图像法解一元二次不等式,熟知相关知识是解题的关键.
    4、
    【解析】
    【分析】
    根据抛物线与轴有交点转化为当时,方程有两个实数根,根据一元二次方程根的判别式大于或等于0,解不等式求解即可.
    【详解】
    ∵抛物线与x轴有交点,
    ∴方程有两个实数根.


    解得.
    【点睛】
    本题考查了抛物线与轴交点问题,转化为一元二次方程根的判别式是解题的关键.一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.
    5、 (1)
    (2)
    (3)①;②
    【解析】
    【分析】
    (1)将点代入解析式,待定系数法求二次函数解析式即可;
    (2)根据两点求得直线的解析式,进而求得的长,根据的范围分类讨论求得的值,进而得到矩形周长与的二次函数关系式,根据二次函数的性质求得最小值即可;
    (3)①根据抛物线解析式求得顶点坐标,进而根据的纵坐标与的纵坐标求得最大与最小值求得其差即可,根据的纵坐标大于3和小于等于3求解即可;②过点作轴交于点,过点作于点,根据①中的范围可得,当时,,进而求得点的坐标,根据计算即可
    (1)
    解:∵抛物线与轴交于两点(A点在B点的左侧),与y轴交于点C,连接AC,BC,A点的坐标是(,0),
    ∴令,则,
    将点代入得
    解得
    则抛物线的解析式为
    (2)
    点P是抛物线上的一个动点,其横坐标为m,且m>0.
    点Q是直线AC上的一个动点,且位于x轴的上方,PQ∥y轴
    点在点上方,
    ,,设直线的解析式为

    解得
    直线的解析式为
    设,则

    抛物线的解析式为
    对称轴为,顶点坐标为,


    根据对称性可得
    设矩形的周长为,
    ①当时,,不能构成矩形,
    ②当时,

    当时,
    ③当时,

    对称轴为
    则当时,不存在最小值
    综上所述,矩形的周长的最小值为
    (3)
    ①抛物线的解析式为
    对称轴为,顶点坐标为,

    当时,
    解得,

    当时,
    当时,

    ②当时,

    当时,
    解得




    如图,过点作轴交于点,过点作于点,

    抛物线的解析式为
    令,则
    解得






    【点睛】
    本题考查了二次函数综合问题,待定系数法求二次函数解析式,二次函数与矩形问题,二次函数与三角形面积问题,掌握二次函数的性质与一次函数的性质是解题的关键.

    相关试卷

    数学九年级下册第30章 二次函数综合与测试优秀课后练习题: 这是一份数学九年级下册第30章 二次函数综合与测试优秀课后练习题

    初中冀教版第30章 二次函数综合与测试精品测试题: 这是一份初中冀教版第30章 二次函数综合与测试精品测试题,共35页。

    冀教版九年级下册第30章 二次函数综合与测试练习: 这是一份冀教版九年级下册第30章 二次函数综合与测试练习,共29页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map