![2021-2022学年最新鲁教版(五四制)六年级数学下册第五章基本平面图形达标测试试卷(无超纲带解析)第1页](http://m.enxinlong.com/img-preview/2/3/12734348/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新鲁教版(五四制)六年级数学下册第五章基本平面图形达标测试试卷(无超纲带解析)第2页](http://m.enxinlong.com/img-preview/2/3/12734348/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新鲁教版(五四制)六年级数学下册第五章基本平面图形达标测试试卷(无超纲带解析)第3页](http://m.enxinlong.com/img-preview/2/3/12734348/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步达标检测题
展开
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步达标检测题,共23页。试卷主要包含了用度,下列说法正确的是等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知C为线段AB上一点,M、N分别为AB、CB的中点,若AC=8cm,则MC+NB的长为( )A.3cm B.4cm C.5cm D.6cm2、下列现象:①用两个钉子就可以把木条固定在墙上②从A地到B地架设电线,总是尽可能沿着线段AB架设③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线④把弯曲的公路改直,就能缩短路程其中能用“两点之间线段最短”来解释的现象有( )A.①④ B.①③ C.②④ D.③④3、中国古代大建筑群平面中统率全局的轴线称为“中轴线”,北京中轴线是古代中国独特城市规划理论的产物,故宫是北京中轴线的重要组成部分.故宫中也有一条中轴线,北起神武门经乾清宫、保和殿、太和殿、南到午门,这条中轴线同时也在北京城的中轴线上.图中是故宫博物院的主要建筑分布图.其中,点A表示养心殿所在位置,点O表示太和殿所在位置,点B表示文渊阁所在位置.已知养心殿位于太和殿北偏西方向上,文渊阁位于太和殿南偏东方向上,则∠AOB的度数是( )A. B. C. D.4、如图,已知线段n与挡板另一侧的四条线段a,b,c,d中的一条在同一条直线上,请借助直尺判断该线段是( )A.a B.b C.c D.d5、用度、分,秒表示22.45°为( )A.22°45′ B.22°30′ C.22°27′ D.22°20′6、小明爸爸准备开车到园区汇金大厦,他在小区打开导航后,显示两地距离为,而导航提供的三条可选路线的长度分别为、、(如图),这个现象说明( )A.两点之间,线段最短 B.垂线段最短C.经过一点有无数条直线 D.两点确定一条直线7、下列说法正确的是( )A.正数与负数互为相反数 B.如果x2=y2,那么x=yC.过两点有且只有一条直线 D.射线比直线小一半8、经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际问题应用的数学知识是( )A.两点确定一条直线 B.两点之间直线最短C.两点之间线段最短 D.直线有两个端点9、如图,已知O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,若OC是的平分线,则下列结论正确的是( )A. B.C. D.10、如图,O是直线AB上一点,则图中互为补角的角共有( )A.1对 B.2对 C.3对 D.4对第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、阳阳在月月的西南方向200m处,则月月在阳阳的_____方向_____m处.2、如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,则∠BOE=_____.(用含α的式子表示)3、式子的最小值是______.4、转化0.15°为单位秒是______.5、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为_____度.三、解答题(5小题,每小题10分,共计50分)1、如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC,∠BOC的度数;(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,求∠MON的度数;(3)过点O作射线OD,若2∠AOD=3∠BOD,求∠COD的度数.2、数轴上不重合两点A,B.(1)若点A表示的数为﹣3,点B表示的数为1,点M为线段AB的中点,则点M表示的数为 ;(2)若点A表示的数为﹣3,线段AB中点N表示的数为1,则点B表示的数为 ;(3)点O为数轴原点,点D表示的数分别是﹣1,点A从﹣5出发,以每秒1个单位长度的速度向正半轴方向移动,点C从﹣3同时出发,以每秒3个单位长度的速度向正半轴方向移动,点B为线段CD上一点.设移动的时间为t(t>0)秒,①用含t的式子填空:点A表示的数为 ;点C表示的数为 ;②当点O是线段AB的中点时,直接写出t的取值范围.3、(1)如图1,已知线段a、b(),用无刻度的直尺和圆规画一条线段MN,使它等于(保留作图痕迹,不要求写作法).(2)如图2,已知点C在线段AB上,其中,,点E是AC的中点,点F在线段CB上,且,求线段EF的长度.4、按要求作答:如图,已知四点A、B、C、D,请仅用直尺和圆规作图,保留画图痕迹.(1)①画直线AB; ②画射线BC;③连接AD并延长到点E,在射线AE上截取AF,使AF=AB+BC;(2)在直线BD上确定一点P,使PA+PC的值最小,并写出画图的依据 .5、如图,已知线段AB=12cm,CD=2cm,线段CD在线段AB上运动,E、F分别是AC、BD的中点.(1)若AC=4cm,EF=___cm;(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由. -参考答案-一、单选题1、B【解析】【分析】设MC=xcm,则AM=(8﹣x)cm,根据M、N分别为AB、CB的中点,得到BM=(8﹣x)cm,NB=(4﹣x)cm,再求解MC+NB即可.【详解】解:设MC=xcm,则AM=AC﹣MC=(8﹣x)cm,∵M为AB的中点,∴AM=BM,即BM=(8﹣x)cm,∵N为CB的中点,∴CN=NB,∴NB,∴MC+NB=x+(4﹣x)=4(cm),故选:B.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的性质、解题的关键是灵活运用数形结合思想.2、C【解析】【分析】直接利用直线的性质和线段的性质分别判断得出答案.【详解】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.故选:C.【点睛】本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.3、B【解析】【分析】由图知,∠AOB=180°−+,从而可求得结果.【详解】∠AOB=180°−+=180°-37°=143°故选:B【点睛】本题考查了方位角及角的和差运算,掌握角的和差运算是关键.4、B【解析】【分析】利用直尺画出遮挡的部分即可得出结论.【详解】解:利用直尺画出图形如下:可以看出线段b与n在一条直线上.故选:B.【点睛】本题主要考查了线段,射线,直线,利用直尺动手画出图形是解题的关键.5、C【解析】【分析】将化成即可得.【详解】解:∵,∴,故选:C.【点睛】题目主要考查角度间的换算公式,熟练掌握角度间的变换进率是解题关键.6、A【解析】【分析】根据两点之间线段最短,即可完成解答.【详解】由题意知,17.8km是两地的直线距离,而导航提供的三条可选路线长度是两地的非直线距离,此现象说明两点之间线段最短.故选:A【点睛】本题考查了两点之间线段最短在实际生活中的应用,掌握这个结论是解答本题的关键.7、C【解析】【分析】A中互为相反数的两个数为一正一负;B中两个数的平方相等,这两个数可以相等也可以互为相反数;C中过两点有且只有一条直线;D中射线与直线无法比较长度.【详解】解:A中正数负数分别为,,错误,不符合要求;B中,可得或,错误,不符合要求;C中过两点有且只有一条直线 ,正确,符合要求;D中射线与直线都可以无限延伸,无法比较长度,错误,不符合要求;故选C.【点睛】本题考查了相反数,直线与射线.解题的关键在于熟练掌握相反数,直线与射线等的定义.8、A【解析】【分析】根据直线公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.9、B【解析】【分析】先求解利用角平分线的定义再求解从而可得答案.【详解】解: 平分 故选B【点睛】本题考查的是角的和差运算,角平分线的定义,熟练的运用角的和差关系探究角与角之间的关系是解本题的关键.10、B【解析】【分析】根据补角定义解答.【详解】解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,故选:B.【点睛】此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.二、填空题1、 东北 200【解析】【分析】根据方向角的定义解答即可.【详解】解:阳阳在月月的西南方向m处,则月月在阳阳的东北方向m处.故答案为:东北,200.【点睛】本题考查方向角,解题的关键是理解题意,灵活运用所学知识解决问题.2、360°-4α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=3∠DOE,可得∠BOD=3x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】解:设∠DOE=x,∵OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,∴∠AOC=∠COD=α-x,∠BOD=3x, 由∠BOD+∠AOD=180°,∴3x+2(α-x )=180°解得x=180°-2α,∴∠BOE=∠BOD-∠DOE=3x-x=2x=2(180°-2α)=360°-4α,故答案为:360°-4α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.3、16【解析】【分析】画出数轴,根据两点间的距离公式解答.【详解】解:如图1,当点P与点C重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+0=AE+BD;如图2,当点P与点C不重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+PC;∵AE+BD+PC> AE+BD,∴当点P与点C重合时,点P到A、B、C、D、E各点的距离之和最小,令数轴上数x表示的为P,则表示点P到A、B、C、D、E各点的距离之和,∴当x=2时,取得最小值,∴的最小值==5+3+0+3+5=16,故答案为:16.【点睛】本题考查了绝对值意义、数轴上两点间的距离,数形结合是解答本题的关键.4、540秒【解析】【分析】先把度化为分,再把分化为秒即可.【详解】故答案为:540秒【点睛】本题考查了度、分、秒之间的互化,注意它们相邻两个单位间的进率都是六十,且高级单位的量化为低级单位的量要乘以进率.5、140【解析】【分析】先根据图形得出∠AOB=40°,再根据和为180度的两个角互为补角即可求解.【详解】解:由题意,可得∠AOB=40°,则∠AOB的补角的大小为:180°−∠AOB=140°.故答案为:140.【点睛】本题考查补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.熟记定义是解题的关键.三、解答题1、 (1)∠AOC=40°,∠BOC=80°(2)40°(3)∠COD的度数为32°或176°【解析】【分析】(1)根据∠AOC:∠BOC=1:2,即可求解;(2)先求出∠COM,再求出∠CON,相加即可求解;(3)分OD在∠AOB内部和外部两种情况分类讨论即可求解.【小题1】解:∵∠AOC:∠BOC=1:2,∠AOB=120°,∴∠AOC=∠AOB=×120°=40°,∠BOC=∠AOB=×120°=80°;【小题2】∵OM平分∠AOC,∴∠COM=∠AOC=×40°=20°,∵∠CON:∠BON=1:3,∴∠CON=∠BOC=×80°=20°,∴∠MON=∠COM+∠CON=20°+20°=40°;【小题3】如图,当OD在∠AOB内部时,设∠BOD=x°,∵2∠AOD=3∠BOD,∴∠AOD=,∵∠AOB=120°,∴x+=120,解得:x=48,∴∠BOD=48°,∴∠COD=∠BOC-∠BOD=80°-48°=32°,如图,当OD在∠AOB外部时,设∠BOD=y°,∵2∠AOD=3∠BOD,∴∠AOD=,∵∠AOB=120°,∴+y+120°=360°解得:y=96°,∴∠COD=∠BOD+∠BOC=96°+80°=176°,综上所述,∠COD的度数为32°或176°.【点睛】本题考查了角的计算及角平分线,掌握角的特点及比例的意义是解决问题的关键.2、 (1)(2)5(3)①,;②且【解析】【分析】(1)先根据两点距离公式求出AB=1-(-3)=1+3=4,根据点M为AB中点,求出AM,然后利用点A表示的数与AM长求出点M表示的数即可;(2)根据点A表示的数为﹣3,线段AB中点N表示的数为1,求出AN=1-(-3)=1+3=4,根据点N为AB中点,可求AB=2AN=2×4=8,然后利用点A表示的数与AB的长求出点B表示的数即可;(3)①用点A运动的速度×运动时间+起点表示数得出点A表示的数为,用点C运动的速度×运动时间+起点表示数得出点C表示的数为;②点A与点B关于点O,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,列方程-3+3t+t=5-(-3)得出点B在CD上t=2,当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,t≠5,当点B与点D重合时,点A运动到1,列方程-5+t=1解方程即可.(1)解:∵点A表示的数为﹣3,点B表示的数为1,∴AB=1-(-3)=1+3=4,∵点M为AB中点,∴AM=BM,∴点M表示的数为:-3+2=-1,故答案为:-1;(2)解:∵点A表示的数为﹣3,线段AB中点N表示的数为1,∴AN=1-(-3)=1+3=4,∵点N为AB中点,∴AB=2AN=2×4=8,∴点B表示的数为:-3+8=5,故答案为:5;(3)①点A表示的数为, 点C表示的数为, 故答案为:;;②点A与点B关于点O对称,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,∴-3+3t+t=5-(-3),∴t=2,当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,∴t≠5,当点B与点D重合时,点A运动到1,-5+t=1,∴t=6,∴当点O是线段AB的中点时, t的取值范围为2≤t≤6,且t≠5.【点睛】本题考查数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程,掌握数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程是解题关键.3、(1)见解析;(2)4cm【解析】【分析】(1)先画一条射线AP,依次截取AB=BN=a,AM=b,即可得到所求作的线段;(2)利用,,求出AB,根据点E是AC的中点,分别求出CE、CF的长,相加即可得到线段EF的长度.【详解】解:(1)线段MN即为所求作的线段;(2)∵,,∴AB=AC+BC=10cm,∵点E是AC的中点,∴,∵,∴∴EF=CE+CF=4cm.【点睛】此题考查了线段的和差作图,线段中点的有关计算,正确掌握作线段等于已知线段的方法及线段中点的定义是解题的关键.4、 (1)①见解析,②见解析,③见解析(2)图见解析,两点之间,线段最短【解析】【分析】(1)①连接AB作直线即可;②连接BC并延长即为射线BC;③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;(2)画直线BD,连接AC交BD于点P,根据两点之间,线段最短,点P即为所求,即可得出依据.(1)①如图所示:连接AB作直线即可;②连接BC并延长即为射线BC;③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;(2)画直线BD,连接AC交BD于点P,根据两点之间,线段最短,点P即为所求,故答案为:两点之间,线段最短.【点睛】题目主要考查直线、射线、线段的作法,两点之间线段最短等,理解题意,结合图形熟练运用基础知识点是解题关键.5、 (1)7(2)不改变,EF=7cm.【解析】【分析】(1)先求出线段BD,然后再利用线段中点的性质求出AE,BF即可;(2)利用线段中点的性质证明EF的长度不会发生改变.(1)解:∵AB=12cm,CD=2cm,AC=4cm,∴BD=AB-CD-AC=6(cm),∵E、F分别是AC、BD的中点,∴CE=AC=2(cm),DF=BD=3(cm),∴EF=CE+CD+DF=7(cm);故答案为:7;(2)不改变,理由:∵AB=12cm,CD=2cm,∴AC+BD=AB-CD=10(cm),∵E、F分别是AC、BD的中点,∴CE=AC,DF=BD,∴CE+DF=AC+BD=5(cm),∴EF=CE+CD+DF=7(cm) .【点睛】本题考查了两点间距离,熟练掌握线段上两点间距离的求法,灵活应用中点的性质解题是关键.
相关试卷
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后测评,共25页。试卷主要包含了如图,射线OA所表示的方向是,上午8,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试巩固练习,共21页。试卷主要包含了已知,则∠A的补角等于等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时练习,共25页。试卷主要包含了下列说法,如图,点在直线上,平分,,,则等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)