鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课时作业
展开六年级数学下册第五章基本平面图形综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知C为线段AB上一点,M、N分别为AB、CB的中点,若AC=8cm,则MC+NB的长为( )
A.3cm B.4cm C.5cm D.6cm
2、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( )
A.两点之间线段最短 B.过一点有无数条直线
C.两点确定一条直线 D.两点之间线段的长度叫做这两点之间的距离
3、如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点,若,,那么的度数为( )
A. B. C. D.
4、如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是( )
A.105° B.125° C.135° D.145°
5、中国古代大建筑群平面中统率全局的轴线称为“中轴线”,北京中轴线是古代中国独特城市规划理论的产物,故宫是北京中轴线的重要组成部分.故宫中也有一条中轴线,北起神武门经乾清宫、保和殿、太和殿、南到午门,这条中轴线同时也在北京城的中轴线上.图中是故宫博物院的主要建筑分布图.其中,点A表示养心殿所在位置,点O表示太和殿所在位置,点B表示文渊阁所在位置.已知养心殿位于太和殿北偏西方向上,文渊阁位于太和殿南偏东方向上,则∠AOB的度数是( )
A. B. C. D.
6、用度、分,秒表示22.45°为( )
A.22°45′ B.22°30′ C.22°27′ D.22°20′
7、上午8:30时,时针和分针所夹锐角的度数是( )
A.75° B.80° C.70° D.67.5°
8、如图,射线OA所表示的方向是( )
A.西偏南30° B.西偏南60° C.南偏西30° D.南偏西60°
9、如图,C为线段上一点,点D为的中点,且,.则的长为( ).
A.18 B.18.5 C.20 D.20.5
10、如图,∠AOB,以OA为边作∠AOC,使∠BOC=∠AOB,则下列结论成立的是( )
A. B.
C.或 D.或
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知线段AC,点D为AC的中点,B是直线AC的一点,且,,则______.
2、阳阳在月月的西南方向200m处,则月月在阳阳的_____方向_____m处.
3、已知∠1的余角等于,那么∠1的补角等于______.
4、钟表4点36分时,时针与分针所成的角为______度.
5、如图已知,线段,,为线段的中点,那么线段_________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,O为直线AB上一点,,OD平分∠AOC,.
(1)图中小于平角的角有______个.
(2)求出∠BOD的度数.
(3)小明发现OE平分∠BOC,请你通过计算说明道理.
2、如图,C为线段AD上一点,B为CD的中点,,.
(1)图中共有______条线段;
(2)求AC的长;
(3)若点E是线段AC中点,求BE的长.
(4)若点F在线段AD上,且cm,求BF的长.
3、已知∠AOB是直角,∠AOC是锐角,OC在∠AOB的内部,OD平分∠AOC,OE平分∠BOC.
(1)根据题意画出图形;
(2)求出∠DOE的度数;
(3)若将条件“∠AOB是直角”改为“∠AOB为锐角,且∠AOB=n°”,其它条件不变,请直接写出∠DOE的度数.
4、如图,已知点A,B,C,请按要求画出图形.
(1)画直线AB和射线CB;
(2)连结AC,并在直线AB上用尺规作线段AE,使;(要求保留作图痕迹)
5、如图,已知点C是线段AB的中点,点D在线段BC上.且CD=BD,点E是线段AD的中点.若CD=4.求线段CE的长.
-参考答案-
一、单选题
1、B
【解析】
【分析】
设MC=xcm,则AM=(8﹣x)cm,根据M、N分别为AB、CB的中点,得到BM=(8﹣x)cm,NB=(4﹣x)cm,再求解MC+NB即可.
【详解】
解:设MC=xcm,则AM=AC﹣MC=(8﹣x)cm,
∵M为AB的中点,
∴AM=BM,
即BM=(8﹣x)cm,
∵N为CB的中点,
∴CN=NB,
∴NB,
∴MC+NB=x+(4﹣x)=4(cm),
故选:B.
【点睛】
本题考查的是两点间的距离的计算,掌握线段中点的性质、解题的关键是灵活运用数形结合思想.
2、C
【解析】
【分析】
结合题意,根据直线的性质:两点确定一条直线进行分析,即可得到答案.
【详解】
结合题意,匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是:两点确定一条直线
故选:C.
【点睛】
本题考查了直线的知识;解题的关键是熟练掌握直线的性质,从而完成求解.
3、B
【解析】
【分析】
根据∠ABE=45°,由角的和差关系求出∠CBG,再根据∠GBH=30°,由角的和差关系求出∠FBG,最后根据∠FBC=∠FBG-∠CBG进行计算即可.
【详解】
解:∵∠ABE=45°,
∴∠CBE=45°,
∴∠CBG=45°,
∵∠GBH=30°,
∴∠FBG=60°,
∴∠FBC=∠FBG-∠CBG=60°-45°=15°.
故选B.
【点睛】
此题考查了角的和差计算,关键是根据已知条件求出角的度数,要能根据图形找出角之间的关系.
4、B
【解析】
【分析】
由题意知计算求解即可.
【详解】
解:由题意知
故答案为:B.
【点睛】
本题考查了方位角的计算.解题的关键在于正确的计算.
5、B
【解析】
【分析】
由图知,∠AOB=180°−+,从而可求得结果.
【详解】
∠AOB=180°−+=180°-37°=143°
故选:B
【点睛】
本题考查了方位角及角的和差运算,掌握角的和差运算是关键.
6、C
【解析】
【分析】
将化成即可得.
【详解】
解:∵,
∴,
故选:C.
【点睛】
题目主要考查角度间的换算公式,熟练掌握角度间的变换进率是解题关键.
7、A
【解析】
【分析】
根据钟面平均分成12份,可得每份的度数;根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:钟面平均分成12份,钟面每份是30°,上午8:30时时针与分针相距2.5份,
此时时钟的时针与分针所夹的角(小于平角)的度数是30°×2.5=75°.
故选:A.
【点睛】
本题考查了钟面角,时针与分针相距的份数乘以每份的度数是解题关键.
8、D
【解析】
【详解】
解:,
根据方位角的概念,射线表示的方向是南偏西60度.
故选:D.
【点睛】
本题主要考查了方向角.解题的关键是弄清楚描述方向角时,一般先叙述北或南,再叙述偏东或偏西.
9、C
【解析】
【分析】
根据线段中点的性质,可用CD表示BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,AC的长.
【详解】
解:由点D为BC的中点,得
BC=2CD=2BD,
由线段的和差,得
AB=AC+BC,即4CD+2CD=30,
解得CD=5,
AC=4CD=4×5=20cm,
故选:C;
【点睛】
本题考查了两点间的距离,利用了线段中点的性质,线段的和差.
10、D
【解析】
【分析】
分OC在∠AOB内部和OC在∠AOB外部两种情况讨论,画出图形即可得出结论.
【详解】
解:当OC在∠AOB内部时,
∵∠BOC=∠AOB,即∠AOB=2∠BOC,
∴∠AOC=∠BOC;
当OC在∠AOB外部时,
∵∠BOC=∠AOB,即∠AOB=2∠BOC,
∴∠AOC=3∠BOC;
综上,∠AOC=∠BOC或∠AOC=3∠BOC;
故选:D.
【点睛】
本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键.
二、填空题
1、2cm或8cm##8cm或2cm
【解析】
【分析】
根据题意,,则不可能在的左侧,则分两种情况讨论,①当点在线段上时,②当点在点的右侧时,根据线段中点的性质以及线段和差关系列方程求解即可.
【详解】
①当点在线段上时,如图,
,,
即
解得
②当点在点的右侧时,如图,
,,
即
解得
综上所述,或
故答案为:2cm或8cm
【点睛】
本题考查了线段中点的性质,线段和差的计算,分类讨论,数形结合是解题的关键.
2、 东北 200
【解析】
【分析】
根据方向角的定义解答即可.
【详解】
解:阳阳在月月的西南方向m处,则月月在阳阳的东北方向m处.
故答案为:东北,200.
【点睛】
本题考查方向角,解题的关键是理解题意,灵活运用所学知识解决问题.
3、135°20′
【解析】
【分析】
求出∠1的度数,再求∠1的补角即可.
【详解】
解:∵∠1的余角等于,
∴∠1=90°-45°20′=44°40′,
∴∠1的补角为180°-∠1=180°-44°40′=135°20′,
故答案为:135°20′.
【点睛】
本题考查互为余角,互为补角的意义,正确理解互余、互补的意义和度分秒的计算方法是解题的前提.
4、78
【解析】
【分析】
因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助钟表,找出10时20分时针和分针之间相差的大格数,用大格数乘30°即可.
【详解】
解:因为时针在钟面上每分钟转360÷12÷60=0.5(度),分针每分钟转360÷60=6(度),
所以钟表上4时36分时,时针与分针的夹角可以看成:
时针转过4时0.5°×36=18°,分针转过7时6°×1=6°.
因为钟表12个数字,每相邻两个数字之间的夹角为30°,
所以4时36分时,分针与时针的小的夹角3×30°-18°+6°=78°.
故在14时36分,时针和分针的夹角为78°.
故答案为:78.
【点睛】
本题考查钟面角的相关计算;用到的知识点为:时针每分钟走0.5度;钟面上两个相邻数字之间相隔30°.
5、6
【解析】
【分析】
根据为线段的中点,可得,即可求解.
【详解】
解:为线段的中点,
,
.
故答案为:6
【点睛】
本题主要考查了有关中点的计算,熟练掌握把一条线段分成相等的两段的点,叫做这条线段的中点是解题的关键.
三、解答题
1、 (1)9
(2)
(3)见解析
【解析】
【分析】
(1)分别以为始边计数数角,从而可得答案;
(2)先求解 再求解 从而可得答案;
(3)分别求解从而可得结论.
(1)
解:图中小于平角的角∠AOD、∠AOC、∠AOE、∠DOC、∠DOE、∠DOB、∠COE、∠COB、∠EOB.
所以图中小于平角的角共有9个.
(2)
解:因为,OD平分∠AOC,
所以,
又
所以
(3)
解:因为,,
所以
又因为
所以,
所以OE平分∠BOC.
【点睛】
本题考查的是角的含义,角的和差运算,角平分线的定义,掌握“角平分线的定义”是解本题的关键.
2、 (1)6
(2)8 cm
(3)6 cm
(4)5 cm或1 cm
【解析】
【分析】
(1)根据线段的定义,写出所有线段即可;
(2)根据为的中点可得,进而根据即可求解;
(3)点E是线段AC中点,则,根据即可求解;
(4)根据题意,根据点在点的左侧和右侧两种情形分类讨论,进而根据线段的和差关系求解即可.
(1)
解:图中的线段有共6条
故答案为:6
(2)
为的中点,
cm
(3)
点E是线段AC中点,则,
cm
(4)
若点F在线段AD上,,
则分两种情况讨论
①当在点的左侧时,
cm,
BF cm,
②当在点的右侧时,
cm,
BF
【点睛】
本题考查了线段的数量问题,线段的和差计算,线段中点的性质,数形结合是解题的关键.
3、 (1)见解析
(2)45°
(3)n°
【解析】
【分析】
(1)根据要求画出图形即可;
(2)利用角平分线的定义计算即可;
(3)利用(2)中,结论解决问题即可.
(1)
解:图形如图所示.
,
(2)
解:∵OD平分∠AOC,OE平分∠BOC,
∴∠DOC=∠AOC,∠EOC=∠BOC,
∴∠DOE=(∠AOC+∠BOC)=∠AOB,
∵∠AOB=90°,
∴∠DOE=45°;
(3)
解:当∠AOB为锐角,且∠AOB=n°时,由(2)可知∠DOE=n°.
【点睛】
本题考查作图-复杂作图,角平分线的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
4、 (1)见解析
(2)见解析
【解析】
【分析】
(1)根据直线和射线的定义画图即可;
(2)先连结AC,然后以点A圆心,以AC为半径,在直线AB上顺次截取2次即可;
(1)
如图所示;
(2)
如图所示,
或
【点睛】
本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,直线向两方无限延伸,射线向一方无限延伸,而线段不延伸.也考查了作一条线段等于已知线段的尺规作图.
5、线段CE的长6.
【解析】
【分析】
根据线段的和差,线段中点的性质,可得答案.
【详解】
解:因为点D在线段BC上,点C是线段AB的中点,点E是线段AD的中点,
∵CD=4,CD=BD,
∴BD=3CD=3×4=12,
∴BC=CD+BD=4+12=16,
∵点C是线段AB的中点,
∴AC=BC=16,
∵AD=AC+CD=16+4=20,
∵点E是线段AD的中点.
∴DE=AD=×20=10,
CE=DE-CD=10-4=6.
答:线段CE的长6.
【点睛】
本题考查了两点间的距离,利用线段和差、线段中点的性质是解题关键.
初中鲁教版 (五四制)第五章 基本平面图形综合与测试精练: 这是一份初中鲁教版 (五四制)第五章 基本平面图形综合与测试精练,共25页。试卷主要包含了已知,则的补角等于等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后复习题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后复习题,共26页。试卷主要包含了如图,下列说法不正确的是,下列命题中,正确的有等内容,欢迎下载使用。
初中数学第五章 基本平面图形综合与测试同步测试题: 这是一份初中数学第五章 基本平面图形综合与测试同步测试题,共25页。试卷主要包含了在一幅七巧板中,有我们学过的等内容,欢迎下载使用。