鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀课堂检测
展开六年级数学下册第五章基本平面图形综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列现象:
①用两个钉子就可以把木条固定在墙上
②从A地到B地架设电线,总是尽可能沿着线段AB架设
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线
④把弯曲的公路改直,就能缩短路程
其中能用“两点之间线段最短”来解释的现象有( )
A.①④ B.①③ C.②④ D.③④
2、延长线段AB到C,使得BC=3AB,取线段AC的中点D,则下列结论:①点B是线段AD的中点.②BD=CD,③AB=CD,④BC﹣AD=AB.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
3、如图,OM平分,,,则( )
A.96° B.108° C.120° D.144°
4、如图,已知线段n与挡板另一侧的四条线段a,b,c,d中的一条在同一条直线上,请借助直尺判断该线段是( )
A.a B.b C.c D.d
5、如图,一副三角板(直角顶点重合)摆放在桌面上,若,则等于( )
A. B. C. D.
6、中国古代大建筑群平面中统率全局的轴线称为“中轴线”,北京中轴线是古代中国独特城市规划理论的产物,故宫是北京中轴线的重要组成部分.故宫中也有一条中轴线,北起神武门经乾清宫、保和殿、太和殿、南到午门,这条中轴线同时也在北京城的中轴线上.图中是故宫博物院的主要建筑分布图.其中,点A表示养心殿所在位置,点O表示太和殿所在位置,点B表示文渊阁所在位置.已知养心殿位于太和殿北偏西方向上,文渊阁位于太和殿南偏东方向上,则∠AOB的度数是( )
A. B. C. D.
7、下列各角中,为锐角的是( )
A.平角 B.周角 C.直角 D.周角
8、下列说法:(1)在所有连结两点的线中,线段最短;(2)连接两点的线段叫做这两点的距离;(3)若线段 ,则点是线段的中点;(4)经过刨平的木板上的两个点,能弹出一条笔直的墨线,是因为两点确定一条直线,其中说法正确的是 ( )
A.(1)(2)(3) B.(1)(4) C.(2)(3) D.(1)(2)(4)
9、如图,点O在CD上,OC平分∠AOB,若∠BOD=153°,则∠DOE的度数是( )
A.27° B.33° C.28° D.63°
10、图中共有线段( )
A.3条 B.4条 C.5条 D.6条
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知,则它的余角是______.
2、的余角等于__________.
3、下列说法正确的有 _____.(请将正确说法的序号填在横线上)
(1)锐角的补角一定是钝角;
(2)一个角的补角一定大于这个角;
(3)若两个角是同一个角的补角,则它们相等;
(4)锐角和钝角互补.
4、如图已知,线段,,为线段的中点,那么线段_________.
5、如图,线段,点是线段上一点,点、分别是、的中点,则的长为__________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知点A,B,C,请按要求画出图形.
(1)画直线AB和射线CB;
(2)连结AC,并在直线AB上用尺规作线段AE,使;(要求保留作图痕迹)
2、已知∠AOD=160°,OB为∠AOD内部的一条射线.
(1)如图1,若OM平分∠AOB,ON平分∠BOD,求∠MON的度数为 ;
(2)如图2,∠BOC在∠AOD内部(∠AOC>∠AOB),且∠BOC=20°,OF平分∠AOC,OG平分∠BOD(射线OG在射线OC左侧),求∠FOG的度数;
(3)在(2)的条件下,∠BOC绕点O运动过程中,若∠BOF=8°,求∠GOC的度数.
3、(1)如图l,点D是线段AC的中点,且 AB=BC,BC=6,求线段BD的长;
(2)如图2,已知OB平分∠AOD,∠BOC=∠AOC,若∠AOD=100°,求∠BOC的度数.
4、如图,已知∠AOB=150°,∠AOC=30°,OE是∠AOB内部的一条射线,OF平分∠AOE,且OF在OC的右侧.
(1)若∠COF=25°,求∠EOB的度数;
(2)若∠COF=n°,求∠EOB的度数.(用含n的式子表示)
5、如图,O为直线AB上一点,,OD平分∠AOC,.
(1)图中小于平角的角有______个.
(2)求出∠BOD的度数.
(3)小明发现OE平分∠BOC,请你通过计算说明道理.
-参考答案-
一、单选题
1、C
【解析】
【分析】
直接利用直线的性质和线段的性质分别判断得出答案.
【详解】
解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;
②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;
④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.
故选:C.
【点睛】
本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.
2、B
【解析】
【分析】
先根据题意,画出图形,设 ,则 ,根据点D是线段AC的中点,可得 ,从而得到 ,BD=CD,AB=CD, ,即可求解.
【详解】
解:根据题意,画出图形,如图所示:
设 ,则 ,
∵点D是线段AC的中点,
∴ ,
∴ ,
∴AB=BD,即点B是线段AD的中点,故①正确;
∴BD=CD,故②正确;
∴AB=CD,故③错误;
∴ ,
∴BC﹣AD=AB,故④正确;
∴正确的有①②④.
故选:B
【点睛】
本题主要考查了考查了线段的和与差,有关中点的计算,能够用几何式子正确表示相关线段间的关系,利用数形结合思想解答是解题的关键.
3、B
【解析】
【分析】
设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.
【详解】
解:设,
∵,
∴,
∴.
∵,
∴,
∴.
∵OM平分,
∴,
∴,解得.
.
故选:B.
【点睛】
本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.
4、B
【解析】
【分析】
利用直尺画出遮挡的部分即可得出结论.
【详解】
解:利用直尺画出图形如下:
可以看出线段b与n在一条直线上.
故选:B.
【点睛】
本题主要考查了线段,射线,直线,利用直尺动手画出图形是解题的关键.
5、A
【解析】
【分析】
由三角板中直角三角尺的特征计算即可.
【详解】
∵和为直角三角尺
∴,
∴
∴
∴
故选:A.
【点睛】
本题考查了三角板中的角度运算,直角三角板的角度分别为90°,45°,45°和90°,60°,30°.
6、B
【解析】
【分析】
由图知,∠AOB=180°−+,从而可求得结果.
【详解】
∠AOB=180°−+=180°-37°=143°
故选:B
【点睛】
本题考查了方位角及角的和差运算,掌握角的和差运算是关键.
7、B
【解析】
【分析】
求出各个选项的角的度数,再判断即可.
【详解】
解:A. 平角=90°,不符合题意;
B. 周角=72°,符合题意;
C. 直角=135°,不符合题意;
D. 周角=180°,不符合题意;
故选:B.
【点睛】
本题考查了角的度量,解题关键是明确周角、平角、直角的度数.
8、B
【解析】
【分析】
根据两点之间线段最短,数轴上两点间的距离的定义求解,线段的中点的定义,直线的性质对各小题分析判断即可得解.
【详解】
解:(1)在所有连结两点的线中,线段最短,故此说法正确;
(2)连接两点的线段的长度叫做这两点的距离,故此说法错误;
(3)若线段AC=BC,则点C不一定是线段AB的中点,故此说法错误;
(4)经过刨平的木板上的两个点,能弹出一条笔直的墨线,是因为两点确定一条直线,故此说法正确;
综上所述,说法正确有(1)(4).
故选:B.
【点睛】
本题考查了线段的性质、两点间的距离的定义,线段的中点的定义,直线的性质等,是基础题,熟记各性质与概念是解题的关键.
9、D
【解析】
【分析】
先根据补角的定义求出∠BOC的度数,再利用角平分线定义即可求解.
【详解】
解:∵∠BOD=153°,
∴∠BOC=180°-153°=27°,
∵CD为∠AOB的角平分线,
∴∠AOC=∠BOC=27°,
∵∠AOE=90°,
∴∠DOE=90°-∠AOC=63°
故选:D.
【点睛】
本题考查了平角的定义,余角和补角,角平分线定义,求出∠BOC的度数是解题的关键.
10、D
【解析】
【分析】
分别以为端点数线段,从而可得答案.
【详解】
解:图中线段有:
共6条,
故选D
【点睛】
本题考查的是线段的含义以及数线段的数量,掌握“数线段的方法,做到不重复不遗漏”是解本题的关键.
二、填空题
1、
【解析】
【分析】
根据余角的定义求即可.
【详解】
解:∵,
∴它的余角是90°-=,
故答案为:.
【点睛】
本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.
2、
【解析】
【分析】
根据和为90°的两个角互为余角解答即可.
【详解】
解:的余角等于90°-=,
故答案为:.
【点睛】
本题考查求一个角的余角,会进行度分秒的运算,熟知余角定义是解答的关键.
3、(1)(3)##(3)(1)
【解析】
【分析】
根据余角与补角的定义,即可作出判断.
【详解】
解:(1)锐角的补角一定是钝角,故(1)正确;
(2)一个角的补角不一定大于这个角;
∵90°角的补角的度数是90°,
∴说一个角的补角一定大于这个角错误,故(2)错误;
(3)若两个角是同一个角的补角,则它们相等;故(3)正确;
(4)锐角和钝角不一定互补,
∵如∠A=10°,∠B=100°,当两角不互补,
∴说锐角和钝角互补错误,故(3)错误;
故答案为:(1)(3).
【点睛】
本题考查了补角和余角的定义,以及补角的性质:同角的补角相等,理解定义是关键.
4、6
【解析】
【分析】
根据为线段的中点,可得,即可求解.
【详解】
解:为线段的中点,
,
.
故答案为:6
【点睛】
本题主要考查了有关中点的计算,熟练掌握把一条线段分成相等的两段的点,叫做这条线段的中点是解题的关键.
5、6.5
【解析】
【分析】
根据中点的性质得出MN=AB即可.
【详解】
∵点、分别是、的中点
∴MC=AC;CN=BC,
∴MN=MC+CN
=AC+BC
=
=
=6.5cm
故答案为6.5.
【点睛】
本题考查了线段中点的定义和性质,解题的关键是熟练应用中点的性质进行计算.
三、解答题
1、 (1)见解析
(2)见解析
【解析】
【分析】
(1)根据直线和射线的定义画图即可;
(2)先连结AC,然后以点A圆心,以AC为半径,在直线AB上顺次截取2次即可;
(1)
如图所示;
(2)
如图所示,
或
【点睛】
本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,直线向两方无限延伸,射线向一方无限延伸,而线段不延伸.也考查了作一条线段等于已知线段的尺规作图.
2、 (1)80°;
(2)70°
(3)42°或58°.
【解析】
【分析】
(1)根据角平分线的性质证得∠BOM=∠AOB,∠BON=∠BOD,即可得到答案;
(2)设∠BOF=x,根据角平分线的性质求出∠AOC=2∠COF=40°+2x,得到∠COD=∠AOD-∠AOC=140°-2x,由OG平分∠BOD,求出∠BOG=∠BOD=70°−x,即可求出∠FOG的度数;
(3)分两种情况:①当OF在OB右侧时,由∠BOC=20°,∠BOF=8°,求得∠COF的度数,利用OF平分∠AOC,得到∠AOC的度数,得到∠BOD的度数,根据OG平分∠BOD,求出∠BOG的度数,即可求出答案;②当OF在OB左侧时,同理即可求出答案.
(1)
解:∵OM平分∠AOB,ON平分∠BOD,
∴∠BOM=∠AOB,∠BON=∠BOD,
∴∠MON=∠BOM+∠BON=∠AOB+∠BOD=∠AOD=80°;
故答案为:80°;
(2)
解:设∠BOF=x,
∵∠BOC=20°,
∴∠COF=20°+x,
∵OF平分∠AOC,
∴∠AOC=2∠COF=40°+2x,
∴∠COD=∠AOD-∠AOC=140°-2x,
∵OG平分∠BOD,
∴∠BOG=∠BOD=70°−x,
∴∠FOG=∠BOG+∠BOF=70°−x+x=70°;
(3)
解:当OF在OB右侧时,如图,
∵∠BOC=20°,∠BOF=8°,
∴∠COF=28°,
∵OF平分∠AOC,
∴∠AOC=2∠COF=56°,
∴∠COD=∠AOD-∠AOC=104°,
∴∠BOD=124°,
∵OG平分∠BOD,
∴∠BOG=∠BOD=62°,
∴∠GOC=∠BOG−∠BOC=62°−20°=42°.
当OF在OB左侧时,如图,
∵∠BOC=20°,∠BOF=8°,
∴∠COF=12°,
∵OF平分∠AOC,
∴∠AOC=2∠COF=24°,
∴∠COD=∠AOD-∠AOC=136°,
∴∠BOD=156°,
∵OG平分∠BOD,
∴∠BOG=∠BOD=78°,
∴∠GOC=∠BOG−∠BOC=78°−20°=58°.
∴∠GOC的度数为42°或58°.
【点睛】
此题考查了几何图形中角度的计算,角平分线的有关计算,正确掌握角平分线的定义及图形中各角度之间的位置关系进行计算是解题的关键.
3、(1)BD=1;(2)∠COB=20°
【解析】
【分析】
(1)根据AB=BC,BC=6求出AB的值,再根据线段的中点求出AD的值,然后可求BD的长;
(2)先根据角平分线的定义求出∠AOB,再根据∠BOC=∠AOC,求解即可.
【详解】
解:(1)∵AB=BC,BC=6,
∴AB=×6=4,
∴AC=AB+BC=10,
∵点D是线段AC的中点,
∴AD=AC=5,
∴BD=AD-AB=5-4=1;
(2)∵OB平分∠AOD,∠AOD=100°,
∴∠AOB=∠AOD=50°,
∵∠BOC+∠AOC=∠AOB,∠BOC=∠AOC,
∴∠AOC+∠AOC=50°,
∴∠AOC=30°,
∴∠BOC=∠AOC=20°.
【点睛】
本题考查了线段的中点,线段的和差,角的平分线,角的和差,数形结合是解答本题的关键.
4、 (1)
(2)
【解析】
【分析】
(1)求出,再由角平分线计算求出,结合图形即可求出;
(2)求出,再由角平分线计算求出,结合图形即可求出.
(1)
∵,,
∴,
∵OF平分,
∴,
∵,
∴;
(2)
∵,,
∴,
∵OF平分,
∴,
∵,
∴.
【点睛】
题目主要考查利用角平分线进行角度间的计算,理解题意,找准各角之间的数量关系是解题关键.
5、 (1)9
(2)
(3)见解析
【解析】
【分析】
(1)分别以为始边计数数角,从而可得答案;
(2)先求解 再求解 从而可得答案;
(3)分别求解从而可得结论.
(1)
解:图中小于平角的角∠AOD、∠AOC、∠AOE、∠DOC、∠DOE、∠DOB、∠COE、∠COB、∠EOB.
所以图中小于平角的角共有9个.
(2)
解:因为,OD平分∠AOC,
所以,
又
所以
(3)
解:因为,,
所以
又因为
所以,
所以OE平分∠BOC.
【点睛】
本题考查的是角的含义,角的和差运算,角平分线的定义,掌握“角平分线的定义”是解本题的关键.
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品随堂练习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品随堂练习题,共25页。试卷主要包含了下列说法中正确的是,下列说法错误的是等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀精练: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀精练,共26页。试卷主要包含了下列说法错误的是,延长线段至点,分别取,如果A,如图,一副三角板,如图所示,点E等内容,欢迎下载使用。
2020-2021学年第五章 基本平面图形综合与测试优秀一课一练: 这是一份2020-2021学年第五章 基本平面图形综合与测试优秀一课一练,共23页。试卷主要包含了若的补角是,则的余角是,若,则的补角的度数为等内容,欢迎下载使用。